Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, alpha2beta1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and alpha2beta1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172143PMC
http://dx.doi.org/10.1083/jcb.200401150DOI Listing

Publication Analysis

Top Keywords

alpha2beta1 integrin
12
endothelial cell
8
disassembly actin
8
focal adhesions
8
protein kinase
8
endorepellin
5
endorepellin endothelial
4
cell
4
cell disassembly
4
actin cytoskeleton
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!