Combinatorial gene regulation by Bmp and Wnt in zebrafish posterior mesoderm formation.

Development

Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195-7350, USA.

Published: August 2004

Combinatorial signaling is an important mechanism that allows the embryo to utilize overlapping signaling pathways to specify different territories. In zebrafish, the Wnt and Bmp pathways interact to regulate the formation of the posterior body. In order to understand how this works mechanistically, we have identified tbx6 as a posterior mesodermal gene activated by both of these signaling pathways. We isolated a genomic fragment from the tbx6 gene that recapitulates the endogenous tbx6 expression, and used this to ask how the Bmp and Wnt signaling pathways combine to regulate gene expression. We find that the tbx6 promoter utilizes distinct domains to integrate the signaling inputs from each pathway, including multiple Tcf/LEF sites and a novel Bmp-response element. Surprisingly, we found that overexpression of either signaling pathway can activate the tbx6 promoter and the endogenous gene, whereas inputs from both pathways are required for the normal pattern of expression. These results demonstrate that both Bmp and Wnt are present at submaximal levels, which allows the pathways to function combinatorially. We present a model in which overlapping Wnt and Bmp signals in the ventrolateral region activate the expression of tbx6 and other posterior mesodermal genes, leading to the formation of posterior structures.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.01236DOI Listing

Publication Analysis

Top Keywords

bmp wnt
12
signaling pathways
12
wnt bmp
8
formation posterior
8
tbx6 posterior
8
posterior mesodermal
8
tbx6 promoter
8
signaling
6
pathways
6
tbx6
6

Similar Publications

Background: Bioengineering of human teeth for replacement is an appealing regenerative approach in the era of gene therapy. Developmentally regulated transcription factors hold promise in the quest because these transcriptional regulators constitute the gene regulatory networks driving cell fate determination. Atonal homolog 1 (Atoh1) is a transcription factor of the basic helix-loop-helix (bHLH) family essential for neurogenesis in the cerebellum, auditory hair cell differentiation, and intestinal stem cell specification.

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (/, , and .

View Article and Find Full Text PDF

Mechanisms and structure-activity relationships of natural polysaccharides as potential anti-osteoporosis agents: A review.

Int J Biol Macromol

January 2025

Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China. Electronic address:

In recent years, polysaccharides derived from natural sources have garnered significant attention due to their safety and potential anti-osteoporotic effects. This review provides a comprehensive overview of the sources, distribution, structures, and mechanisms of anti-osteoporosis polysaccharides, as well as an investigation into their structure-activity relationships. Over thirty distinct, homogenous polysaccharides with anti-osteoporosis properties have been extracted from natural sources, primarily categorized as glucans, fructans, galactomannans, glucomannans, and various other heteropolysaccharides.

View Article and Find Full Text PDF

Ligand-Independent Vitamin D Receptor Actions Essential for Keratinocyte Homeostasis in the Skin.

Int J Mol Sci

January 2025

Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan.

Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since -KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among -KO, -R270L/H301Q, and wild-type (WT) rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!