Tolevamer, (GT160-246), is a sodium salt of styrene sulfonate polymer that is under development for the treatment of diarrhea caused by infection with Clostridium difficile. Pulsed ultrafiltration binding experiments in phosphate buffer containing 0.15 M Na(+) provide per polymer chain dissociation constants of 133 nM and 8.7 microM for the binding of tolevamer to C. difficile toxins A and B, respectively. At 0.05 M Na(+), the binding of toxin A to tolevamer is irreversible, whereas the dissociation constant to toxin B under these conditions is 120 nM. Binding constants obtained from fluorescence polarization data for toxin A binding to tolevamer at 0.15 M Na(+) agree substantially with those obtained by pulsed ultrafiltration. The binding activity of tolevamer reported here correlates well with previously reported results for the inhibition of the biological activity of C. difficile toxins A and B. From the fluorescence polarization data, it is estimated that one toxin A molecule interacts with between 600 to 1000 monomer units on tolevamer at 0.15 M Na(+). Thus, the data suggest a very large interaction surface between polymer and toxin A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304374PMC
http://dx.doi.org/10.1529/biophysj.104.041277DOI Listing

Publication Analysis

Top Keywords

binding tolevamer
12
015 na+
12
toxin binding
8
pulsed ultrafiltration
8
ultrafiltration binding
8
difficile toxins
8
fluorescence polarization
8
polarization data
8
tolevamer 015
8
tolevamer
7

Similar Publications

is considered a nosocomial pathogen that flares up in patients exposed to antibiotic treatment. However, four out of ten patients diagnosed with infection (CDI) acquired the infection from non-hospitalized individuals, many of whom have not been treated with antibiotics. Treatment of recurrent CDI (rCDI) with antibiotics, especially vancomycin (VAN) and metronidazole (MNZ), increases the risk of experiencing a relapse by as much as 70%.

View Article and Find Full Text PDF

Clostridioides difficile (C. difficile) infection is a major public health problem worldwide. The current treatment of C.

View Article and Find Full Text PDF

In Vitro Inhibition of Zika Virus Replication with Poly(Sodium 4-Styrenesulfonate).

Viruses

August 2020

Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.

Zika virus (ZIKV) is an emerging mosquito-borne pathogen associated with microcephaly and other congenital abnormalities in newborns as well as neurologic complications in adults. The explosive transmission of the virus in the last ten years put it in the limelight and improved our understanding of its biology and pathology. Currently, no vaccine or drugs are available to prevent or treat ZIKV infections.

View Article and Find Full Text PDF

The regulatory role of sulfated polysaccharides in facilitating rhBMP-2-induced osteogenesis.

Biomater Sci

October 2019

Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China and Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology, Shanghai, 200237, People's Republic of China.

Sulfated polysaccharides have received much attention in recent years due to their special biological activities, especially the regulation of the biological activity of growth factors such as the representative inductive growth factor recombinant human bone morphogenetic protein-2 (rhBMP-2). However, the regulatory mechanisms from the aspect of the molecular chain structure have rarely been reported. In this article, we selected three kinds of sulfonates containing different backbone structures and functional groups, 2-N,6-O-sulfated chitosan (26 SCS), sulfated dextran (DSS) and poly(sodium-p-styrenesulfonate) (PSS), to explore the interaction between them and rhBMP-2.

View Article and Find Full Text PDF

Among other components of the extracellular matrix (ECM), glycoproteins and glycosaminoglycans (GAGs) have been strongly associated to the retention or misfolding of different proteins inducing the formation of deposits in amyloid diseases. The composition of these molecules is highly diverse and a key issue seems to be the equilibrium between physiological and pathological events. In order to have a model in which the composition of the matrix could be finely controlled, we designed and synthesized crosslinked hydrophilic polymers, the so-called hydrogels varying the amounts of negative charges and hydroxyl groups that are prevalent in GAGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!