Quantification of lipid selectivity by membrane proteins has been previously addressed mainly from electron spin resonance studies. We present here a new methodology for quantification of protein-lipid selectivity based on fluorescence resonance energy transfer. A mutant of M13 major coat protein was labeled with 7-diethylamino-3((4'iodoacetyl)amino)phenyl-4-methylcoumarin to be used as the donor in energy transfer studies. Phospholipids labeled with N-(7-nitro-2-1,3-benzoxadiazol-4-yl) were selected as the acceptors. The dependence of protein-lipid selectivity on both hydrophobic mismatch and headgroup family was determined. M13 major coat protein exhibited larger selectivity toward phospholipids which allow for a better hydrophobic matching. Increased selectivity was also observed for anionic phospholipids and the relative association constants agreed with the ones already presented in the literature and obtained through electron spin resonance studies. This result led us to conclude that fluorescence resonance energy transfer is a promising methodology in protein-lipid selectivity studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304355PMC
http://dx.doi.org/10.1529/biophysj.104.040337DOI Listing

Publication Analysis

Top Keywords

protein-lipid selectivity
16
m13 major
12
major coat
12
coat protein
12
energy transfer
12
quantification protein-lipid
8
electron spin
8
spin resonance
8
resonance studies
8
fluorescence resonance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!