Stress is one of the major contributors to the development of cardiovascular disorders and psychiatric illnesses. Immobilization stress belongs to severe stressors and is known to activate several calcium transport systems. The aim of this work was to determine whether repeated immobilization stress changes mRNA and protein levels of the type 1 and 2 inositol-1,4,5-trisphosphate (IP(3)) receptors in cardiac tissue. Rats were immobilized for 7 days, 2 h daily. After repeated immobilization, increased numbers of collagen fibers were accumulated in the heart atria compared to hearts of the control group of rats. Gene expression was determined after reverse transcription and subsequent real-time polymerase chain reaction, using SYBR Green fluorescent dye. Protein levels were determined by Western blot and hybridization with the primary antibody against IP(3) receptors. Contrary to single immobilization, repeated immobilization decreased a gene expression of the type 1 and 2 IP(3) receptors, and also protein levels of the IP(3) receptors. Although the physiologic relevance of our observations remains to be elucidated, we propose that the decrease in IP(3) receptors may have an impact on the development of the pathophysiologic changes in the heart.

Download full-text PDF

Source
http://dx.doi.org/10.1196/annals.1296.042DOI Listing

Publication Analysis

Top Keywords

ip3 receptors
20
repeated immobilization
16
protein levels
16
immobilization stress
12
mrna protein
8
levels type
8
type ip3
8
gene expression
8
ip3
6
immobilization
5

Similar Publications

G protein-coupled receptor (GPCR) signalling pathways underlie numerous physiological processes, are implicated in many diseases and are major targets for therapeutics. There are more than 800 GPCRs, which together transduce a vast array of extracellular stimuli into a variety of intracellular signals via heterotrimeric G protein activation and multiple downstream effectors. A key challenge in cell biology research and the pharmaceutical industry is developing tools that enable the quantitative investigation of GPCR signalling pathways to gain mechanistic insights into the varied cellular functions and pharmacology of GPCRs.

View Article and Find Full Text PDF

Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).

View Article and Find Full Text PDF

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate receptors (IP3R) mediate Ca2+ release from intracellular stores, contributing to complex regulation of numerous physiological responses. The involvement of the three IP3R genes (ITPR1, ITPR2 and ITPR3) in inherited human diseases has started to shed light on the essential roles of each receptor in different human tissues and cell types. Variants in the ITPR3 gene, which encodes IP3R3, have recently been found to cause demyelinating sensorimotor Charcot-Marie-Tooth neuropathy type 1J (CMT1J).

View Article and Find Full Text PDF

During skeletal muscle unloading, phosphoinositide 3-kinase (PI3K), and especially PI3K gamma (PI3Kγ), can be activated by changes in membrane potential. Activated IP3 can increase the ability of Ca to enter the nucleus through IP3 receptors. This may contribute to the activation of transcription factors that initiate muscle atrophy processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!