One of the most appropriate biomarkers for the verification of organophosphorus nerve agent exposure is the conjugate of the nerve agent to butyrylcholinesterase (BuChE). The phosphyl moiety of the nerve agent can be released from the BuChE enzyme by incubation with fluoride ions, after which the resulting organophosphonofluoridate can be analyzed with gas chromatography-mass spectrometry (GC-MS). This paper describes recent improvements of the fluoride-induced reactivation in human plasma or serum samples by enhancing the sample preparation with new solid-phase extraction cartridges and the MS analysis with large volume injections. Analysis is performed with thermal desorption GC with either mass selective detection with ammonia chemical ionization or high-resolution MS with electron impact ionization. The organophosphorus chemical warfare agents analyzed in this study are O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate, ethyl methylphosphonofluoridate, isopropyl methylphosphonofluoridate (sarin, GB), O-ethyl N,N-dimethylphosphoramidocyanidate, ethyl N,N-dimethylphosphoramidofluoridate, and cyclohexyl methylphosphonfluoridate. Detection limits of approximately 10 pg/mL plasma were achieved for all analytes, which corresponds to 0.09% inhibition with GB on a sample with normal BuChE levels.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jat/28.5.364DOI Listing

Publication Analysis

Top Keywords

nerve agent
16
agent exposure
8
improvements fluoride
4
fluoride reactivation
4
reactivation method
4
method verification
4
nerve
4
verification nerve
4
agent
4
exposure appropriate
4

Similar Publications

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

As one of the most common solid pediatric cancers, Neuroblastoma (NBL) accounts for 15% of all of the cancer-related mortalities in infants with increasing incidence all around the world. Despite current therapeutic approaches for NBL (radiotherapies, surgeries, and chemotherapies), these approaches could not be beneficial for all of patients with NBL due to their low effectiveness, and some severe side effects. These challenges lead basic medical scientists and clinical specialists toward an optimal medical interventions for clinical management of NBL.

View Article and Find Full Text PDF

Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.

View Article and Find Full Text PDF

Background: No consensus has been reached on the effect of topical application of amitriptyline and nortriptyline on irreversible pulpitis pain in teeth with failed pulpal anesthesia after a successful inferior alveolar nerve (IAN) block. This study aimed to assess the effect of topical application of amitriptyline and nortriptyline on irreversible pulpitis pain in teeth with failed pulpal anesthesia after a successful IAN block.

Materials And Methods: This double-blind randomized controlled clinical trial was conducted on 45 patients with irreversible pulpitis.

View Article and Find Full Text PDF

Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure.

Front Neurosci

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.

Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!