As part of the EEC project to sequence the entire chromosome III of Saccharomyces cerevisiae we have sequenced a total of 11,040 bp from near the right end of the chromosome. A new protein kinase gene was found at one extremity of the sequenced region (Wilson et al., 1992), while the previously sequenced actin binding protein gene, ABP1, (Drubin et al., 1990) was found at the other extremity. We present here the sequence of the region between these two genes which has the potential to code for two new open reading frames (ORFs).

Download full-text PDF

Source
http://dx.doi.org/10.1002/yea.320080708DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
chromosome iii
8
open reading
8
reading frames
8
complete sequence
4
sequence 6146
4
6146 fragment
4
fragment saccharomyces
4
cerevisiae chromosome
4
iii open
4

Similar Publications

The Impact of Selenium on the Physiological Activity of Yeast Cells ATCC 7090 and CCY 20-2-26.

Front Biosci (Landmark Ed)

January 2025

Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.

Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.

Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

On the Biosynthesis of Bioactive Tryptamines in Black Cohosh ( L.).

Plants (Basel)

January 2025

Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.

Botanical dietary supplements are widely used, but issues of authenticity, consistency, safety, and efficacy that complicate their poorly understood mechanism of action have prompted questions and concerns in the popular and scientific literature. Black cohosh ( L., syn.

View Article and Find Full Text PDF

Evidence in Lager Yeasts of β-Lyase Activity Breaking Down γ-GluCys-Conjugates More Efficiently Than Cys-Conjugates to Odorant Beer Polyfunctional Thiols.

Molecules

January 2025

Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université Catholique de Louvain, Croix du Sud, 2 Box L7.05.07, 1348 Louvain-la-Neuve, Belgium.

The prevalence of glutathionylated (G-) precursors of polyfunctional thiols (PFTs) over their free forms has prompted investigating how to optimize the enzymatic breakdown of these precursors with yeast during lager, ale, and non-alcoholic/low-alcoholic beer (NABLAB) fermentation trials. Some yeasts have been selected for their higher β-lyase activity on the cysteinylated (Cys-) conjugates (up to 0.54% for SafAle K-97), yet some strains and one maltose-negative var.

View Article and Find Full Text PDF

Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!