The polymorphisms in the Plasmodium falciparum multidrug resistance 1 (pfmdr1) and P. falciparum chloroquine resistance transporter (pfcrt) genes, which are associated with chloroquine resistance, were examined in 48 P. falciparum isolates from uncomplicated malaria patients from the West Lombok District in Indonesia. The point mutation N86Y in pfmdr1 was present in 35.4% of the isolates and mutation K76T in pfcrt was found in all but one of the samples studied. Identified pfcrt haplotypes were mainly identical to the Papua New Guinea type S(agt)VMNT (42 of 48, 87.5%), and a few isolates had the Southeast Asia type CVIET (5 of 48, 10.4%). Moreover, one P. falciparum isolate harbored the K76N mutation, giving rise to the haplotype CVMNN, which was not previously reported in field isolates. Our findings suggest that chloroquine resistance in this area might have the same origin as in Papua New Guinea.
Download full-text PDF |
Source |
---|
Clin Cancer Res
January 2025
ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
Purpose: Identifying therapeutic targets for Signet Ring Cell Carcinoma (SRCC) of the colon and rectum is a clinical challenge due to the lack of Patient-Derived Organoids (PDO) or Xenografts (PDX). We present a robust method to establish PDO and PDX models to answer address this unmet need. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Animal Protozoa Laboratory and School of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, and Laboratory of Zoonotic Diseases, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen Campus, Shenzhen 518107, China. Electronic address:
Toxoplasma gondii is an intracellular and parasitic protozoon that harbors specialized cellular structures and molecular mechanisms, including the Plant-like Vacuolar Compartment (PLVAC). The PLVAC performs multifaceted roles in the parasite, contributing to ion homeostasis, proteolysis, pH regulation, and autophagy. Despite significant efforts over the past decade to characterize the PLVAC, the proteins localized to this organelle remain largely unidentified.
View Article and Find Full Text PDFMolecules
January 2025
Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea.
This study investigates the antimalarial potential of extracts and compounds from various plants used in traditional Korean medicine, in response to the increasing resistance of to standard treatments such as chloroquine and artemisinin. The antimalarial activity screening was conducted on 151 extracts, identifying the top seven candidates, including (50% ethanol and 100% methanol extract), , (hot water and 50% ethanol extract), , and . Among these, was identified as the top priority for further analysis due to its high antimalarial activity and high yield of bioactive compounds.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
Cisplatin (CDDP) remains a key drug for patients with advanced bladder cancer (BC), despite the emergence of new therapeutic agents; thus, the identification of factors contributing to CDDP treatment resistance is crucial. As acidity of the tumor microenvironment has been reported to be associated with treatment resistance and poor prognosis across various cancer types, our objectives in this study were to investigate the effects of an acidic environment on BC cells and elucidate the mechanisms behind CDDP resistance. Our findings show that BC cells cultured under acidic conditions developed cisplatin resistance as acidity increased.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Institut Pasteur de Dakar, Immunophysiopathology and Infectious Diseases Department, G4-Malaria Experimental Genetic Approaches and Vaccines Unit, Dakar, Senegal.
Background: Since 2006, artemisinin-based combination therapies (ACTs) have been introduced in Senegal in response to chloroquine resistance (CQ-R) and have shown high efficacy against Plasmodium falciparum. However, the detection of the PfKelch13R515K mutation in Kaolack, which confers artemisinin resistance in vitro, highlights the urgency of strengthening antimalarial drug surveillance to achieve malaria elimination by 2030.
Objective: To assess the proportion of P.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!