In this study, we report data about the presence of Wolbachia in Drosophila yakuba, D. teissieri, and D. santomea. Wolbachia strains were characterized using their wsp gene sequence and cytoplasmic incompatibility assays. All three species were found infected with Wolbachia bacteria closely related to the wAu strain, found so far in D. simulans natural populations, and were unable to induce cytoplasmic incompatibility. We injected wRi, a CI-inducing strain naturally infecting D. simulans, into the three species and the established transinfected lines exhibited high levels of CI, suggesting that absence of CI expression is a property of the Wolbachia strain naturally present or that CI is specifically repressed by the host. We also tested the relationship between the natural infection and wRi and found that it fully rescues the wRi modification. This result was unexpected, considering the significant evolutionary divergence between the two Wolbachia strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470911PMC
http://dx.doi.org/10.1534/genetics.103.015990DOI Listing

Publication Analysis

Top Keywords

cytoplasmic incompatibility
12
drosophila yakuba
8
induce cytoplasmic
8
wri modification
8
wolbachia strains
8
three species
8
strain naturally
8
wolbachia
5
natural wolbachia
4
wolbachia infections
4

Similar Publications

is a common intracellular bacterial genus that infects numerous arthropods and filarial nematodes. In arthropods, it typically acts as a reproductive parasite, leading to various phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization, or male-killing. Quill mites (Acariformes: Syringophilidae) are a group of bird parasites that have recently attracted increasing interest due to the detection of unique phylogenetic lineages of endosymbiotic bacteria and potentially pathogenic taxa.

View Article and Find Full Text PDF
Article Synopsis
  • Wolbachia pipientis are bacteria that manipulate the reproduction of their arthropod and nematode hosts to enhance their own transmission, particularly favoring infected females.
  • Research reveals that these bacteria can improve fertility in Drosophila melanogaster females with specific mutations affecting germline stem cell differentiation.
  • Further analysis shows that W. pipientis infection alters the expression of key genetic interactors and impacts genes involved in ubiquitination and histone modification, suggesting these processes play a role in how W. pipientis influences germline stem cell functions.
View Article and Find Full Text PDF

Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions.

View Article and Find Full Text PDF

A potential role for the interaction of Wolbachia surface proteins with the Drosophila microtubulin in maintenance of endosymbiosis and affecting spermiogenesis.

J Insect Physiol

December 2024

School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China. Electronic address:

Wolbachia, as a widely infected intracellular symbiotic bacterium in Arthropoda, is able to manipulate the reproduction of insect hosts for facilitating their own transmission. Cytoplasmic incompatibility (CI) is the most common phenotype that Wolbachia induced in insect hosts where they resulted in the failure of uninfected egg hatch when fertilized with the sperm derived from Wolbachia-infected males, suggesting that the sperm are modified by Wolbachia during spermatogenesis. Although the molecular mechanisms of CI are beginning to be understood, the effects of Wolbachia on the symbiotic relationship and the proper dynamics of spermatogenesis have not yet been fully investigated.

View Article and Find Full Text PDF

A stage structured model for mosquito suppression with immigration.

Math Biosci Eng

November 2024

School of Statistics and Mathematics, Guangdong University of Finance and Economics, Guangzhou 510320, China.

The incompatible insect technique based on is a promising alternative to control mosquito-borne diseases, such as dengue fever, malaria, and Zika, which drives wild female mosquitoes sterility through a mechanism cytoplasmic incompatibility. A successful control program should be able to withstand the perturbation induced by the immigration of fertilized females from surrounding uncontrolled areas. In this paper, we formulated a system of delay differential equations, including larval and adult stages, interfered by -infected males.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!