The Skp1 protein, best known as a subunit of E3(SCF)-ubiquitin ligases, is subject to complex glycosylation in the cytoplasm of the cellular slime mold Dictyostelium. Pro143 of this protein is sequentially modified by a prolyl hydroxylase and five soluble glycosyltransferases (GT), to yield the structure Galalpha1,Galalpha1,3Fucalpha1,2Galbeta1,3GlcNAcalpha1-HyPro143. These enzymes are unusual in that they are expressed in the cytoplasmic compartment of the cell, rather than the secretory pathway where complex glycosylation of proteins usually occurs. The first enzyme in the pathway appears to be related to the soluble animal prolyl 4-hydroxylases (P4H), which modify the transcriptional factor subunit HIF-1alpha in the cytoplasm, and more distantly to the P4Hs that modify collagen and other proteins in the rER, based on biochemical and informatics analyses. The soluble alphaGlcNAc-transferase acting on Skp1 has been cloned and is distantly related to the mucin-type polypeptide N-acetyl-alpha-galactosaminyltransferase in the Golgi of animals. Its characterization has led to the discovery of a family of related polypeptide N-acetyl-alpha-glucosaminyltransferases in the Golgi of selected lower eukaryotes. The Skp1 GlcNAc is extended by a bifunctional diglycosyltransferase that sequentially and apparently processively adds beta1,3Gal and alpha1,2Fuc. Though this structure is also formed in the animal secretory pathway, the GTs involved are dissimilar. Conceptual translation of available genomes suggests the existence of this kind of complex cytoplasmic glycosylation in other eukaryotic microorganisms, including diatoms, oomycetes, and possibly Chlamydomonas and Toxoplasma, and an evolutionary precursor of this pathway may also occur in prokaryotes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2004.04.007DOI Listing

Publication Analysis

Top Keywords

cytoplasmic glycosylation
8
complex glycosylation
8
secretory pathway
8
glycosylation protein-hydroxyproline
4
protein-hydroxyproline relationship
4
glycosylation
4
relationship glycosylation
4
glycosylation pathways
4
pathways skp1
4
skp1 protein
4

Similar Publications

Excessive iron deposition can lead to ferroptosis, a form of iron-dependent cell death detrimental to neuronal survival. Microglia have been identified as having a high capacity for iron deposition, yet it remains unclear whether microglia undergo ferroptosis while phagocytosing excessive amounts of iron after spinal cord injury (SCI). Here, we observed scattered iron around the epicenter of the injured spinal cord at 7 days post-injury (dpi) in mice, which then accumulated in the lesion core at 14 dpi.

View Article and Find Full Text PDF

Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.

View Article and Find Full Text PDF

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Raisins are an important source of polyphenolic compounds in plant foods, and polyphenols are associated with antioxidant and anti-aging activity. In this work, 628 polyphenols in raisin extracts were characterized using UPLC-MS/MS, mainly including tricetin 3'-glucuronide, diisobutyl phthalate, butyl isobutyl phthalate, isoquercitrin and 6-hydroxykaempferol-7-O-glucoside. The oxidative stress in HO-induced HepG2 cells and D-gal-induced aging mice was alleviated by raisin polyphenols (RPs) via increases in the cellular levels of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), along with decreases in malonaldehyde (MDA), reactive oxygen species (ROS) and advanced glycosylation end-products (AGEs) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!