Quantitative structure-activity-relationship (QSAR) study on aromatic/heterocyclic sulfonamides containing 8-quinoline-sulfonyl carbonic anhydrase (CA) inhibitors has been carried out topologically using first-order valence connectivity index ((1)chi(v)). Excellent results are obtained against all the three isozymes; CA I, II and IV of the zinc enzyme CA by using indicator parameters along with (1)chi(v).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2004.03.002 | DOI Listing |
Database (Oxford)
January 2025
Department of In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium.
The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data.
View Article and Find Full Text PDFAgonists of insect hormones, namely molting hormone (MH) and juvenile hormone (JH), disrupt the normal growth of insects and can be employed as insecticides that are harmless to vertebrates. In this study, a series of experiments and computational analyses were conducted to rationally design novel insect hormone agonists. Syntheses and quantitative structure-activity relationship (QSAR) analyses of two MH agonist chemotypes, imidazothiadiazoles and tetrahydroquinolines, revealed that the structural factors important for the ligand-receptor interactions are significantly different between these chemotypes.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, China. Electronic address:
Minimal study focused on the association between mixed pollutants in atmospheric particulate matter (PM) and their reproductive health risks. Utilizing a novel quantitative structure-activity relationship (QSAR) integrated machine learning algorithms, we evaluated the mixed reproductive health risks associated with phthalates (PAEs) and organophosphates (OPEs) exposure by assessing the affinities of these compounds binding to estrogen receptors (ER) and androgen receptors (AR). The mixed toxicity equivalent factor (TEF) and mixed toxicity equivalent quantity (TEQ) by the QSAR model were all smaller than the sum TEF and TEQ of individual PAEs and OPEs, which may be due to the antagonistic effect of PAEs and OPEs monomers on reproductive toxicity.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab, Bathinda, India.
Alzheimer's disease is one of the most complex neurological disorders and millions of people are suffering from this disease all over the world. In the past two decades acetylcholinesterase (AChE) has been the most explored pathological hallmark. The generation of potent AChE inhibitors has grown as a rapid pathological tool for the efficacious treatment of the disease.
View Article and Find Full Text PDFIn Silico Pharmacol
January 2025
Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka 570015 India.
Unlabelled: Parkinson's Disease (PD) is a neurodegenerative disorder that primarily affects persons aged 65 and older. It leads to a decline in motor function as a result of the buildup of abnormal protein deposits called Lewy bodies in the brain. Existing therapies exhibit restricted effectiveness and undesirable side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!