Insulin adsorption on coated silica based supports grafted with N-acetylglucosamine by liquid affinity chromatography.

J Chromatogr B Analyt Technol Biomed Life Sci

Centre d'Etudes Universitaires de Taza, BP 1223 Taza-Gare, Université Sidi Mohamed Ben Abdellah, Taza, Morocco.

Published: August 2004

Silica beads are coated with dextran carrying a calculated amount of positively charged diethylassminoethyl groups (DEAE) in order to neutralize negative charged silanol groups at the silica surface and in this way to minimize non specific interactions between silica surface and proteins in solution. Dextran-coated silica supports are potentially excellent stationary phases for high-performance liquid chromatography of proteins. These supports combine the advantages of polysaccharide phases with the excellent mechanical characteristics of silica. These supports (silica-dextran-DEAE = SID) are easily functionalized by grafting N-acetylglucosamine (GlcNAc) using conventional coupling methods. The performances of the support bearing GlcNAc are studied by high-performance liquid affinity chromatography (HPLAC) of insulin, the hypoglycemic peptide hormone of the human organism. The study shows that these supports exhibit a reversible and specific affinity towards insulin and allow separations with high purification yields. Moreover, the influence of different physico-chemical parameters (pH, NaCl and insulin concentration) on insulin retention on the support was analysed. This allowed us to optimize the conditions of adsorption and to better understand the interaction mechanisms between insulin and GlcNAc as biospecific ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2004.03.026DOI Listing

Publication Analysis

Top Keywords

liquid affinity
8
affinity chromatography
8
silica surface
8
silica supports
8
high-performance liquid
8
insulin
6
silica
6
supports
5
insulin adsorption
4
adsorption coated
4

Similar Publications

UPLC-PDA-ESI-MS based chemometric analysis for solvent polarity effect evaluation on phytochemical compounds and antioxidant activity in habanero pepper (Capsicum chinense Jacq) fruit extract.

J Food Sci

December 2024

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Unidad Sureste, Tablaje Catastral Km 5.5 Carretera Sierra Papacal-Chuburná Puerto, Parque Científico Tecnológico de, Yucatán, Mexico.

The effect of solvents with different polarities on the recovery of phytochemicals (carotenoids, capsaicinoids, and phenolic compounds) from habanero pepper (Capsicum chinense) and their association with antioxidant activity (ABTS and DPPH) was evaluated through Ultra-Performance-Liquid Chromatography coupled with a Photodiode Array Detector and a Electrospray Ionization Mass Spectrometry (UPLC-PDA-ESI-MS)-based chemometric analysis, including linear correlation, multiple linear regression, and principal component analysis (PCA). The solvent polarity scale was established according to solvent dielectric constants (ɛ). Color variation (ΔE) was used to determine the presence of carotenoids, with the highest ΔE obtained using low-polarity solvents (hexane and ethyl acetate).

View Article and Find Full Text PDF

Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of was analysed by preparing and analysing ethanolic extracts of by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects.

View Article and Find Full Text PDF

Cardiac diseases remain one of the leading causes of death globally, often linked to ischemic conditions that can affect cellular homeostasis and metabolism, which can lead to the development of cardiovascular dysfunction. Considering the effect of ischemic cardiomyopathy on the global population, it is vital to understand the impact of ischemia on cardiac cells and how ischemic conditions change different cellular functions through post-translational modification of cellular proteins. : To understand the cellular function and fine-tuning during stress, we established an ischemia model using neonatal rat ventricular cardiomyocytes.

View Article and Find Full Text PDF

Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, (), through phytochemical characterization using liquid chromatography-mass spectrometry (HPLC-MS), as well as in vitro and in silico evaluation of its biological activities (antioxidant and antimicrobial). Phytochemical characterization revealed that the ethanolic extract of (DdEx) is rich in phenolic compounds, with a total of 22 phycocompounds identified.

View Article and Find Full Text PDF

Abelmoschus manihot flower (AMF), commonly cultivated in Southern China, is homology of medicine and food. In this study, microscopic observation revealed the microstructure of AMF, including upper epidermal cells and nonglandular hairs that play roles in defense and water management. Physicochemical analyses indicated that AMF powder exhibits weak acidity and low moisture content, suggesting its stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!