Residue-residue contacts are very important in forming protein structure. In this work, we calculated the average probability of residue-residue contacts in 470 globular proteins and analyzed the distribution of contacts in the different interval of residues using Contacts of Structural Units (CSU) and Structural Classification (SCOP) software. It was found that the relationship between the average probability PL and the residue distance L for four structural classes of proteins could be expressed as lgPL=a+b x L, where a and b are coefficients. We also discussed the connection between two aspects of proteins which have equal array residue number and found that the distribution probability was stable (or un-stable) if the proteins had the same (or different) compact (for example synthase) in the same structural class.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02947603 | DOI Listing |
Protein Sci
January 2025
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA.
G protein Coupled Receptors (GPCRs) are the largest family of cell surface receptors in humans. Somatic mutations in GPCRs are implicated in cancer progression and metastasis, but mechanisms are poorly understood. Emerging evidence implicates perturbation of intra-receptor activation pathway motifs whereby extracellular signals are transmitted intracellularly.
View Article and Find Full Text PDFBlood Adv
December 2024
University of Illinois at Urbana Champaign, Urbana, Illinois, United States.
Formation of the extrinsic complex (EC) on cell surfaces is the event that triggers the coagulation cascade. Tissue factor (TF) and factor VIIa (FVIIa) form the EC together with factor X (FX) on phosphatidylserine-containing membranes, leading to FX activation by TF:FVIIa. This lipid dependence has made experimental characterization of the EC structure challenging.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
The elucidation of protein structure and function plays a pivotal role in understanding biological processes and facilitating drug discovery. With the exponential growth of protein sequence data, machine learning techniques have emerged as powerful tools for predicting protein characteristics from sequences alone. This review provides a comprehensive overview of the importance and application of machine learning in inferring protein structure and function.
View Article and Find Full Text PDFMethods Mol Biol
November 2024
Department of Mathematics, Rutgers University, Piscataway, NJ, USA.
This chapter addresses the following fundamental question: Do sequences of protein domains with sandwich architecture have common sequence characteristics even though they belong to different superfamilies and folds? The analysis was carried out in two stages: (1) determination of domain substructures shared by all sandwich proteins and (2) detection of common sequence characteristics within the substructures. Analysis of supersecondary structures in domains of proteins revealed two types of four-strand substructures that are common to sandwich proteins. At least one of these common substructures was found in proteins of 42 sandwich-like folds (per structural classification in the CATH database).
View Article and Find Full Text PDFbioRxiv
September 2024
College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!