Release from polymeric prodrugs: linkages and their degradation.

J Pharm Sci

Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence 66047, USA.

Published: August 2004

Polymeric prodrugs have evolved into a very useful class of drug delivery agents. Numerous polymeric prodrugs have been prepared for applications ranging from passive drug targeting to controlled release. The mechanistic aspects of the release processes, however, have not been clearly delineated. This review highlights the salient features of the chemical reactions that are responsible for drug release from these systems. The mechanisms of release from polymeric prodrugs employing various chemical linkages, esters, carbonates, carbamates, C=N linkage and amides, are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.20096DOI Listing

Publication Analysis

Top Keywords

polymeric prodrugs
16
release polymeric
8
release
5
prodrugs
4
prodrugs linkages
4
linkages degradation
4
degradation polymeric
4
prodrugs evolved
4
evolved class
4
class drug
4

Similar Publications

In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach.

View Article and Find Full Text PDF

The opioid crisis, driven by synthetic opioids like fentanyl, demands innovative solutions. The opioid antidote naloxone has a short action ( ~ 1 hour), requiring repeated doses. To address this, we present a new and simple naloxone prodrug delivery system repurposing a hydrophilic derivative of acoramidis, a potent transthyretin ligand.

View Article and Find Full Text PDF

The synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (, low nanoparticle concentrations) and those of the physical encapsulation of drugs (, burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content.

View Article and Find Full Text PDF

Gemcitabine (GEM), a chemotherapeutic agent, is widely used to treat various neoplastic conditions, such as pancreatic, lung, breast, and ovarian cancer. However, its therapeutic effectiveness is often hindered by its short half-life and susceptibility to enzymatic degradation. To address these limitations, in this research, five new conjugates of GEM were synthesized by conjugating its N-4 amino group with five different acids [4-decenoic acid (4Dec), lipoic acid (Lipo), lauric acid (Laur), 5-benzyl N-(tert-butoxycarbonyl)- L-glutamate (Glu), and decanoic acid (Dec)].

View Article and Find Full Text PDF

A covalent organic framework-based nanoreactor for enhanced chemodynamic therapy through cascaded Fenton-like reactions and nitric oxide delivery.

Chem Commun (Camb)

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.

Herein, we report a nanoscale composite COF material loaded with copper peroxide (CuO) and nitric oxide (NO) prodrug a stepwise post-synthetic modification. The obtained CuO2@COF-SNO can undergo a cascade reaction in the tumor microenvironment to generate reactive oxygen and nitrogen species (ROS/RNS) to enhance chemodynamic therapy of the tumor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!