Truncated singular value decomposition (TSVD) is an effective method for the deconvolution of dynamic contrast-enhanced MRI. Two robust methods for the selection of the truncation threshold on a pixel-by-pixel basis--generalized cross validation (GCV) and the L-curve criterion (LCC)--were optimized and compared to paradigms in the literature. The methods lead to improvements in the estimate of the residue function and of its maximum and converge properly with SNR. The oscillations typically observed in the solution vanish entirely and perfusion is more accurately estimated at small mean transit times. This results in improved image contrast and increased sensitivity to perfusion abnormalities, at the cost of 1-2 min in calculation time and isolated instabilities in the image. It is argued that the latter problem may be resolved by optimization. Simulated results for GCV and LCC are equivalent in terms of performance, but GCV is faster.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.20113DOI Listing

Publication Analysis

Top Keywords

deconvolution dynamic
8
dynamic contrast-enhanced
8
contrast-enhanced mri
8
mri data
4
data linear
4
linear inversion
4
inversion choice
4
choice regularization
4
regularization parameter
4
parameter truncated
4

Similar Publications

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for advanced KS remain limited.

View Article and Find Full Text PDF

Historically, electrophysiological correlates of scene processing have been studied with experiments using static stimuli presented for discrete timescales where participants maintain a fixed eye position. Gaps remain in generalizing these findings to real-world conditions where eye movements are made to select new visual information and where the environment remains stable but changes with our position and orientation in space, driving dynamic visual stimulation. Co-recording of eye movements and electroencephalography (EEG) is an approach to leverage fixations as time-locking events in the EEG recording under free-viewing conditions to create fixation-related potentials (FRPs), providing a neural snapshot in which to study visual processing under naturalistic conditions.

View Article and Find Full Text PDF

To assess the utility of IVIM parameters in evaluating uterine fibroid blood flow compared to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) derived blood flow. Sixteen premenopausal women with uterine fibroids were enrolled in this prospective study. Pelvic MRI scans were obtained for each subject, both with and without continuous intravenous infusion of oxytocin, known to decrease significantly uterine fibroid blood flow, to assess the changes in blood flow of uterine fibroids.

View Article and Find Full Text PDF

Spatial deconvolution from bulk DNA methylation profiles determines intratumoral epigenetic heterogeneity.

Cell Biosci

January 2025

Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.

Background: Intratumoral heterogeneity emerges from accumulating genetic and epigenetic changes during tumorigenesis, which may contribute to therapeutic failure and drug resistance. However, the lack of a quick and convenient approach to determine the intratumoral epigenetic heterogeneity (eITH) limit the application of eITH in clinical settings. Here, we aimed to develop a tool that can evaluate the eITH using the DNA methylation profiles from bulk tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!