The exciton (coupled oscillator) model for optical activity is a very useful and powerful method which allows to analyze a circular dichroism (CD) spectrum in a nonempirical way, arriving at a safe assignment of the absolute configuration of organic and inorganic compounds. Usually in this model only the exciton coupling of two electrically allowed transitions (oscillators) is taken into account. This approach has the important advantage of an easy application but, sometimes, it may lead to wrong results. Thus, in this review article a more general treatment, which allows considering the simultaneous coupling of several oscillators, i.e., the DeVoe model, is presented and critically analyzed, discussing in detail the latest applications reported in the literature. In the authors opinion, since the DeVoe model joins generality and reliability requiring an almost negligible computational effort, it represents the method of choice for stereochemical assignments, even by nonspecialists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.20056 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, Brazil. Electronic address:
In response to the growing need to expand the knowledge base on novel, more sustainable protein sources, this study investigated the effectiveness of cowpea protein concentrate (CPC) as a natural emulsifying agent, examining the relationships between pH (3-11), oil concentration (2-10 %), and emulsion stability. pH and oil concentration significantly impacted droplet size distribution, with uniformity decreasing in the order of pH 9 > pH 11 > pH 7, which was attributed to droplet coalescence and flocculation. As evidenced by circular dichroism, alkalinity induced a slight increase in the beta-sheet content of CPC, while simultaneously reducing the alpha-helix content.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i 96720, United States.
A novel sesquiterpene lactone derivative, vernonolide A (), featuring an unprecedented carbon skeleton, along with its plausible biosynthetic precursor, vercinolide I (), and eight known sesquiterpene lactones (-) were isolated and characterized from the whole plants of (L.). The structures of and were elucidated using nuclear magnetic resonance spectroscopic analysis and calculated and experimental electronic circular dichroism spectra.
View Article and Find Full Text PDFBiochem Mol Biol Educ
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA.
We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
Apurinic/apyrimidinic (AP) sites are endogenous DNA lesions widespread in human cells. Having no nucleobases, they are noncoding and promutagenic. AP site repair is generally initiated through strand incision by AP endonuclease 1 (APE1).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!