Sending the signal: molecular mechanisms regulating glucose uptake.

Med Sci Sports Exerc

Department of Physiology and Pharmacology and Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Hospital, Karolinska Institutet, Stockholm, Sweden.

Published: July 2004

The molecular signaling mechanisms by which insulin leads to increased glucose transport and metabolism and gene expression are not completely elucidated. We have characterized the nature of insulin signaling defects in skeletal muscle from Type 2 diabetic patients. Insulin receptor substrate (IRS-1) phosphorylation, phosphatidylinositol (PI) 3-kinase activity, and glucose transport activity are impaired as a consequence of functional defects, whereas insulin receptor tyrosine phosphorylation, mitogen-activated protein kinase (MAPK) phosphorylation, and glycogen synthase activity are normal. Using biotinylated photoaffinity labeling, we have shown that reduced cell surface GLUT4 levels can explain glucose transport defects in skeletal muscle from Type 2 diabetic patients under insulin-stimulated conditions. Current work is focused on mechanisms behind insulin-dependent and insulin-independent regulation of glucose uptake. We have recently determined the independent effects of insulin and hypoxia/AICAR exposure on glucose transport and cell surface GLUT4 content in skeletal muscle from nondiabetic and Type 2 diabetic subjects. Hypoxia and AICAR increase glucose transport via an insulin-independent mechanism involving activation of 5'-AMP-activated kinase (AMPK). AMPK signaling is intact, because 5-aminoimidazole-4-carboxamide 1-beta-D-ribonucleoside (AICAR) increased AMPK and acetyl-CoA carboxylase (ACC) phosphorylation to a similar extent in Type 2 diabetic and nondiabetic subjects. However, AICAR responses on glucose uptake were impaired. Our studies highlight important AMPK-dependent and independent pathways in the regulation of GLUT4 and glucose transport activity in insulin resistant skeletal muscle. Understanding signaling mechanisms to downstream metabolic responses may provide valuable clues to a future therapy for Type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1249/01.mss.0000132387.25853.3bDOI Listing

Publication Analysis

Top Keywords

glucose transport
24
skeletal muscle
16
type diabetic
16
glucose uptake
12
glucose
9
signaling mechanisms
8
defects skeletal
8
muscle type
8
diabetic patients
8
insulin receptor
8

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Aims: To compare the effects of ipragliflozin, a sodium-dependent glucose transporter-2 inhibitor, and those of metformin on the visceral fat area (VFA), a prospective, multi-centre, open-label, blinded-endpoint, randomized, controlled study was undertaken. The generated data were used to examine the effects of ipragliflozin and metformin on indices of hepatic steatosis and liver fibrosis.

Materials And Methods: In total, 103 Japanese patients with type-2 diabetes (T2D), body mass index (BMI) of ≥22 kg/m and glycated haemoglobin level of 7%-10% were randomly administered ipragliflozin 50 mg or metformin 1000 mg for 24 weeks.

View Article and Find Full Text PDF

Long-distance transport and associated fasting of unweaned calves have the potential to compromise the animals' welfare. This observational study aimed to determine how transport and fasting durations impacted the physiology and health of 115 transported calves in three transport groups; IRE (n = 20, mean age 29.8d; short road transport (~ 29 h incl.

View Article and Find Full Text PDF

The study investigated the effect of casticin on the proliferation of non-small cell lung cancer(NSCLC) H322 cells and explored its molecular mechanism. Firstly, the cell counting kit-8(CCK-8) assay, colony formation assay, and EdU assay were used to detect the effect of casticin on the proliferation capacity of H322 cells under different concentrations and treatment durations. Then, glucose uptake, lactate production, extracellular pH, and oxygen consumption of H322 cells were measured before and after casticin treatment to analyze its impact on glycolysis in NSCLC H322 cells.

View Article and Find Full Text PDF

Effects of Novel Antidiabetic Agents on Contrast-Associated Acute Kidney Injury in Diabetic Patients Undergoing Percutaneous Coronary Intervention.

Am J Cardiol

January 2025

Research Unit of Cardiac Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.

Contrast-associated acute kidney injury (CA-AKI) remains a serious complication after percutaneous coronary revascularization (PCI), with limited effective preventive strategies especially for diabetic patients. This study aimed to assess the effects of novel antidiabetic agents (NAD), i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!