Basal ganglia are interconnected subcortical nuclei, connected to the thalamus and all cortical areas involved in sensory motor control, limbic functions and cognition. The striatal output neurones (SONs), the major striatal population, are believed to act as detectors and integrators of distributed patterns of cerebral cortex inputs. Despite the key role of SONs in cortico-striatal information processing, little is known about their local interactions. Here, we report the existence and characterization of electrical and GABAergic transmission between SONs in rat brain slices. Tracer coupling (biocytin) incidence was high during the first two postnatal weeks and then decreased (postnatal days (P) 5-25, 60%; P25-30, 29%; n= 61). Electrical coupling was observed between 27% of SON pairs (coupling coefficient: 3.1 +/- 0.3%, n= 89 at P15) and as shown by single-cell RT-PCR, several connexin (Cx) mRNAs were found to be expressed (Cx31.1, Cx32, Cx36 and Cx47). GABAergic synaptic transmission (abolished by bicuculline, a GABA(A) receptor antagonist) observed in 19% of SON pairs (n= 62) was reliable (mean failure rate of 6 +/- 3%), precise (variation coefficient of latency, 0.06), strong (IPSC amplitudes of 38 +/- 12 pA) and unidirectional. Interestingly, electrical and chemical transmission were mutually exclusive. These results suggest that preferential networks of electrically and chemically connected SONs, might be involved in the channelling of cortico-basal ganglia information processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665072 | PMC |
http://dx.doi.org/10.1113/jphysiol.2004.065672 | DOI Listing |
Langmuir
January 2025
Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland.
Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
Electric-field-induced shape memory effect has potential applications in electromechanical actuator. Here, this study proposes the a phase structure design routine in (1-x)(75NaBiTiO-25SrTiO)-xPbTiO ceramics to obtain large electromechanical response and shape memory effect. It is found that the shape memory effect is closely related to the bending deformation induced by asymmetric polarization between positive and negative electrodes, which is resulted from the reductions of Bi and Pb because of electron injection from negative electrode.
View Article and Find Full Text PDFChem Sci
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology Ma'anshan 243032 Anhui China
Organic compounds present promising options for sustainable zinc battery electrodes. Nevertheless, the electrochemical properties of current organic electrodes still lag behind those of their inorganic counterparts. In this study, nitro groups were incorporated into pyrene-4, 5, 9, 10-tetraone (PTO), resulting in an elevated discharge voltage due to their strong electron-withdrawing capabilities.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Electrical Engineering, Feng Chia University, Taichung, 407802, Taiwan.
This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA.
Soft electronics, known for their bendable, stretchable, and flexible properties, are revolutionizing fields such as biomedical sensing, consumer electronics, and robotics. A primary challenge in this domain is achieving low power consumption, often hampered by the limitations of the conventional von Neumann architecture. In response, the development of soft artificial synapses (SASs) has gained substantial attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!