Environmental stress impacts cause an increased formation of reactive oxygen species (ROS) in the chloroplasts (photo-oxidative stress). The role of glutathione in the antioxidative defence system provides a rationale for its use as a stress marker. However, responses of glutathione concentrations and redox states are not consistent among the large number of available publications. In the present review the hypothesis that stress responses of the glutathione system follow a general ecophysiological stress-response concept is investigated. In this view, an initial response phase would be followed by an acclimation phase where a new steady-state is established. Alternatively, if successful acclimation is not achieved, degradation of the system will follow. Recent publications dealing with responses to photochilling, salinity, and drought are analysed as to whether the results fit the concept. In general, an initial stress response was related to changes in the glutathione redox state, whereas acclimation was marked by increased glutathione concentrations, increased related enzyme activities, and/or a more reduced redox state of glutathione. The latter was interpreted as overcompensation leading to enhanced regeneration of glutathione. Deterioration effects upon strong stress impacts were related to progressive degradation and oxidation of the glutathione pool. A time-course analysis, which has rarely been done in the published literature, showed this sequence of events. When apple trees were subjected to progressing drought, the initial response was a slight oxidation of the glutathione pool, followed by increased glutathione concentrations. When the stress increased, glutathione concentrations dropped and redox state became more oxidized, which marked the degradation of the system. In spite of the general congruency of these results with the suggested stress-response concept, several limitations have to be highlighted: The importance of the glutathione system relative to other components of the photoprotective and antioxidative defence system, as well as relative to stress avoidance strategies, has to be established. It is suggested that a variety of parameters taking into account alternative protection pathways (e.g. photorespiration, light dissipation) and other components of the antioxidative systems should be measured. Within such response patterns the glutathione system is a valuable stress marker in ecophysiological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erh194DOI Listing

Publication Analysis

Top Keywords

glutathione system
16
glutathione concentrations
16
glutathione
14
stress marker
12
stress-response concept
12
redox state
12
increased glutathione
12
stress
10
stress impacts
8
antioxidative defence
8

Similar Publications

Highly electroactive thiazolium [5,4-d]thiazol-2,5-dicarboxylic acid-silver electrochemiluminescent metal-organic frameworks: synthesis, properties and application in glutathione detection.

Mikrochim Acta

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi' an, 710069, PR, China.

Thiazolo[5,4-d]thiazole-2,5-dicarboxylic acid (HThz), a thiazolothiazole (TTz) derivative with carboxylic acid groups, was synthesized as a ligand for the creation of five MOFs, each associated with distinct metal ions including Ag, Mn, Co, Zn, and Cu. The cathodic electrochemiluminescence (ECL) of HThz and the resulting MOFs was investigated. HThz was found to generate ECL signals, but this process was heavily reliant on potassium persulfate (KSO) as a co-reactant.

View Article and Find Full Text PDF

This study primarily investigated the mechanism of Astragalus polysaccharides(APS), a Chinese medicinal material, in regulating the Nrf2/SLC7A11/GPX4 signaling pathway to induce ferroptosis in ovarian cancer cells(Caov-3 and SKOV3 cells). Caov-3 and SKOV3 cells were divided into control(Vehicle) group, APS group, glutathione peroxidase 4 inhibitor(RSL3) group, and APS+RSL3 group. After 48 h of intervention, the activity and morphology of the cells in each group were observed.

View Article and Find Full Text PDF

Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.

View Article and Find Full Text PDF

Objectives: Sulforaphane (SFN), an isothiocyanate in cruciferous plants, has been reported to be effective in treating central nervous system diseases. However, how SFN protects the central nervous system needs further study. The aim of this study was to investigate the neuroprotective effect of SFN and its possible mechanism of action.

View Article and Find Full Text PDF

Pathogenic variants of GDAP1 cause Charcot-Marie-Tooth disease (CMT), an inherited neuropathy characterized by axonal degeneration. GDAP1, an atypical glutathione S-transferase, localizes to the outer mitochondrial membrane (OMM), regulating this organelle's dynamics, transport, and membrane contact sites (MCSs). It has been proposed that GDAP1 functions as a cellular redox sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!