Skeletal muscle fibers are multinucleated. Each myonucleus regulates gene products and protein expression in only a restricted portion of the muscle fiber, the myonuclear domain (MND). In the rat diaphragm muscle (DIAm), corticosteroid (CoS) treatment causes atrophy of fibers containing myosin heavy chain (MHC): MHC2X and/or MHC2B. We hypothesized that DIAm fiber MND size is maintained during CoS-induced atrophy. Adult male rats received methylprednisolone for 11 days at 1 (CoS-Low, n = 8) or 8 mg x kg(-1) x day(-1) (CoS-High, n = 8). Age-matched (CTL-AgeM, n = 8), sham-operated (SHAM-AgeM, n = 8), and weight-matched (CTL-WtM, n = 8) animals served as controls. In single DIAm fibers, cross-sectional area (CSA), MND size, and MHC expression were determined. Fiber CSA and MND size were similar in CTL-AgeM and SHAM-AgeM groups. Only fibers containing MHCslow or MHC2A displayed smaller CSA in CTL-WtM than in CTL-AgeM and SHAM-AgeM groups, and MND size was reduced in all fibers. Thus fibers containing MHCslow and MHC2A maintain the number of myonuclei, whereas MHC2X or MHC2B fibers show loss of myonuclei during normal muscle growth. Both CoS groups displayed smaller CSA and MND size than CTL-AgeM and SHAM-AgeM groups. However, compared with CTL-WtM DIAm fibers, only fibers containing MHC2X or MHC2B displayed reduced CSA and MND size after CoS treatment. Thus little, if any, loss of myonuclei was associated with CoS-induced atrophy of MHC2X or MHC2B DIAm fibers. In summary, MND size does not appear to be regulated during CoS-induced DIAm atrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00625.2003 | DOI Listing |
Muscle Nerve
December 2024
Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
Introduction/aims: A previous randomized controlled trial showed that guided self-help acceptance and commitment therapy plus standard medical care (ACT+SMC) was superior to standard medical care alone (SMC) for improving quality of life (QoL) and mood at 9-weeks post randomization in a sample of people with muscle disorders (MD). This follow-up study evaluated whether these effects were maintained in the longer term alongside individual patterns of response.
Methods: The original study was a two-arm parallel group randomized controlled trial, which compared ACT+SMC to SMC.
Thromb Haemost
December 2024
Pharmacology, Chulalongkorn University, Bangkok, Thailand.
Wiskott-Aldrich syndrome (WAS) is a severe X-linked disorder caused by loss-of-function mutations in the WAS gene, responsible for encoding WASP, a key regulator of actin cytoskeleton in all hematopoietic cells except red blood cells. The mechanism underlying microthrombocytopenia, a distinctive feature of WAS and a major contributor to mortality, remains not fully elucidated. In this study, using different gene editing strategies, we corrected mutations in patient-derived WAS-induced pluripotent stem cell lines, generating isogeneic WAS iPSC lines.
View Article and Find Full Text PDFiScience
November 2024
Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
J Hazard Mater
December 2024
State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
Nitrate and ammonium are primary nitrogen (N) contaminants in groundwater and effective restoration strategies depend on understanding the interactions of N transformation processes along redox gradients. Utilizing the N tracing technique, we assess nitrate removal rates, focusing on denitrification and anammox in a N-rich groundwater of the Hetao Basin, a typical semiarid region in western China. Results showed that N removal rate (0.
View Article and Find Full Text PDFMethodsX
December 2024
Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor Darul Ehsan, Malaysia.
Amyotrophic lateral sclerosis (ALS) characterized by progressive degeneration of motor neurons is a debilitating disease, posing substantial challenges in both prognosis and daily life assistance. However, with the advancement of machine learning (ML) which is renowned for tackling many real-world settings, it can offer unprecedented opportunities in prognostic studies and facilitate individuals with ALS in motor-imagery tasks. ML models, such as random forests (RF), have emerged as the most common and effective algorithms for predicting disease progression and survival time in ALS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!