Activation of the platelet-activating factor receptor (PAFR) regulates neural transmission. A PAFR blocker reduced the peak hypoxic (pHVR) but not hypercapnic ventilatory (HCVR) responses in rats [Am. J. Physiol. 275 (1998) R604]. To further examine the role of PAFR in respiratory control, genotype-verified PAFR -/- and PAFR +/+ adult male mice underwent hypoxic and hypercapnic challenges. HCVR was similar in the two groups (p-NS). However, pHVR was significantly reduced in PAFR -/- mice (38 +/- 13% baseline [S.D.]) compared to PAFR +/+ mice (78 +/- 16% baseline; P < 0.001, ANOVA), with reduced tidal volume recruitments during pHVR. In addition, hypoxic ventilatory depression was attenuated in PAFR -/- mice (P < 0.01), and was primarily due to attenuation of the time-dependent decreases in oxygen consumption during sustained hypoxia (P < 0.01). Thus, PAFR expression/function modulates components of the acute ventilatory and metabolic adaptations to hypoxia but not to hypercapnia. Imbalances in PAFR activity may lead to maladaptive regulation of the tightly controlled metabolic-ventilatory relationships during hypoxia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resp.2004.03.005 | DOI Listing |
J Org Chem
January 2025
RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan.
Herein, a rapid and efficient continuous-flow synthesis of amides is described. The Ritter reaction, catalyzed by a reusable solid acid catalyst composed of -phenolsulfonic acid-formaldehyde resin (PAFR II), was used to convert nitriles and alcohols to amides in up to 90% yield. The continuous-flow system facilitates short reaction times and maintains activity for several weeks.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of , which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and progression of sepsis. We here evaluated the cooperative effects of LTA (SaLTA) and muramyl dipeptide (MDP), the minimal structure of PGN, on NO production in both a mouse macrophage-like cell line, RAW 264.
View Article and Find Full Text PDFTissue Barriers
December 2024
Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.
This review investigates the pathogenic processes through which crosses the blood-brain barrier (BBB) to cause meningitis, with a focus on the interaction with host receptors in the central nervous system (CNS). a primary cause of bacterial meningitis, utilizes unique receptor-mediated pathways to infiltrate the BBB. The bacterial interaction with the platelet-activating factor receptor (PAFR) and the polymeric immunoglobulin receptor (pIgR) is looked at in this study.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
September 2024
Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
Since 2000s, we have outlined the multifaceted role of inflammation in several aspects of cancer, via specific inflammatory mediators, including the platelet activating factor (PAF) and PAF-receptor (PAFR) related signaling, which affect important inflammatory junctions and cellular interactions that are associated with tumor-related inflammatory manifestations. It is now well established that disease-related unresolved chronic inflammatory responses can promote carcinogenesis. At the same time, tumors themselves are able to promote their progression and metastasis, by triggering an inflammation-related vicious cycle, in which PAF and its signaling play crucial role(s), which usually conclude in tumor growth and angiogenesis.
View Article and Find Full Text PDFJ Neurochem
October 2024
Bernal Institute, University of Limerick, Limerick, Ireland.
Astrocytes are important regulators of neuronal development and activity. Their activation plays a key role in the response to many central nervous system (CNS) pathologies. However, reactive astrocytes are a double-edged sword as their chronic or excessive activation may negatively impact CNS physiology, for example, via abnormal modulation of synaptogenesis and synapse function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!