Selective inducible nitric oxide synthase (iNOS) inhibition attenuates remote acute lung injury in a model of ruptured abdominal aortic aneurysm.

J Surg Res

Division of Vascular Surgery, Department of Surgery, The Toronto Hospital (General Division), Faculty of Medicine, University of Toronto, Toronto, Ontario M5C 2C4, Canada.

Published: August 2004

Objective: Abdominal aortic aneurysm rupture is associated with a systemic inflammatory response syndrome and acute lung injury. Using a selective inducible nitric oxide synthase (iNOS) inhibitor, N(6)-(iminoethyl)-lysine (L-NIL), we explored the role of iNOS in the early pro-inflammatory signaling and acute lung injury in experimental abdominal aortic aneurysm rupture.

Materials And Methods: Anesthetized rats were randomized to sham control or shock and clamp (s + c) groups, which underwent one hour of hemorrhagic shock, followed by 45 minutes of supramesenteric aortic clamping, and then two hours resuscitated reperfusion. Animals in s + c were randomized to receive intravenous L-NIL at 50 microg/kg/h or saline at the start of reperfusion. Pulmonary permeability to (125)I-labeled albumin, myeloperoxidase (MPO) activity, cytokine levels, and semi-quantitative RT-PCR for mRNA were indicators of microvascular permeability, leuco-sequestration, and pro-inflammatory signaling, respectively.

Results: Lung permeability index were significantly increased in s + c compared to sham (4.43 +/- 0.96 versus 1.30 +/- 0.17, P < 0.01), and attenuated by L-NIL treatment (2.14 +/- 0.70, P < 0.05). Lung tissue MPO activity was significantly increased in s + c compared to sham (2.80 +/- 0.32 versus 1.03 +/- 0.29, P < 0.002), and attenuated by L-NIL treatment (1.50 +/- 0.20, P < 0.007). Lung tissue iNOS activity was significantly increased in s + c compared to sham animals (P < 0.05), and attenuated by L-NIL treatment (P < 0.05). Lung tissue iNOS mRNA was upregulated 8-fold in s + c compared to sham (P < 0.05). Data represents mean +/- standard error mean, comparisons with ANOVA.

Conclusions: These data suggest that in our model of ruptured abdominal aortic aneurysm iNOS plays a crucial role in reperfusion lung injury. Selective inhibition of iNOS during early reperfusion prevents neutrophil mediated acute lung injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jss.2004.03.011DOI Listing

Publication Analysis

Top Keywords

lung injury
20
acute lung
16
abdominal aortic
16
aortic aneurysm
16
compared sham
16
increased compared
12
attenuated l-nil
12
l-nil treatment
12
lung tissue
12
lung
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!