A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The influence of tungsten on the chemical composition of a temporally evolving nanostructure of a model Ni-Al-Cr superalloy. | LitMetric

AI Article Synopsis

  • The study examines how tungsten (W) affects the development of gamma' precipitates in a specific model Ni-Al-Cr alloy through advanced microscopy techniques.
  • The alloys tested include Ni-10 Al-8.5 Cr and a variant with W, both aged at 1073 K, showing early spherical gamma' precipitates that gradually change to cuboidal shapes over time.
  • Findings reveal that W influences the concentration profiles within the precipitates, reducing the growth rate and enhancing the segregation of aluminum (Al) and chromium (Cr) during aging.

Article Abstract

The influence of W on the temporal evolution of gamma' precipitation toward equilibrium in a model Ni-Al-Cr alloy is investigated by three-dimensional atom-probe (3DAP) microscopy and transmission electron microscopy (TEM). We report on the alloys Ni-10 Al-8.5 Cr (at.%) and Ni-10 Al-8.5 Cr-2 W (at.%), which were aged isothermally in the gamma + gamma' two-phase field at 1073 K, for times ranging from 0.25 to 264 h. Spheroidal-shaped gamma' precipitates, 5-15 nm diameter, form during quenching from above the solvus temperature in both alloys at a high number density (approximately 1023 m-3). As gamma' precipitates grow with aging at 1073 K, a transition from spheroidal- to cuboidal-shaped precipitates is observed in both alloys. The elemental partitioning and spatially resolved concentration profiles across the gamma' precipitates are obtained as a function of aging time from three-dimensional atom-by-atom reconstructions. Proximity histogram concentration profiles (Hellman et al., 2000) of the quaternary alloy demonstrate that W concentration gradients exist in gamma' precipitates in the as-quenched and 0.25-h aging states, which disappear after 1 h of aging. The diffusion coefficient of W in gamma' is estimated to be 6.2 x 10-20 m2 s-1 at 1073 K. The W addition decreases the coarsening rate constant, and leads to stronger partitioning of Al to gamma' and Cr to gamma.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927604040589DOI Listing

Publication Analysis

Top Keywords

gamma' precipitates
16
model ni-al-cr
8
gamma'
8
ni-10 al-85
8
concentration profiles
8
precipitates
5
influence tungsten
4
tungsten chemical
4
chemical composition
4
composition temporally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!