The plastid accD gene encoding the carboxyltransferase b subunit of acetyl-coenzyme A carboxylase (ACCase) was cloned from potato. Potato accD (saccD) is 2487 bp in length with a 614 bp 5 cent upstream promoter region and an ORF of 1524 bp, corresponding to a polypeptide of 507 amino acids. The N-terminal region lacks recognizable motifs, while the C-terminal regions contains five motifs. Among these is motif II, PLIIVCASGGARMQE, the sole motif present in all available accD sequences of plants and animals, and of E. coli, suggesting that this motif may correspond to the catalytic site. saccD has the typical prokaryotic promoter signatures, TTGACA and TATCAA, which are -35 and -10-like sequences for plastid-encoded RNA polymerase (PEP), at positions -184 and -160, respectively. However, it seems to be transcribed by the nucleus-encoded RNA polymerase because it is expressed in tuber and root, and in the dark (under crippled PEP conditions) and its transcription initiation sites do not correspond to those of PEP. saccD is expressed in all potato tissues, i.e., leaf, stem, root, and tuber, and its transcript is produced at a similar rate in the light and dark, at different developmental stages, and during growth in the presence of different sugars and carbon sources. Taken together, our results suggest that potato accD is a housekeeping gene constitutively expressed in both chloroplast and amyloplast.
Download full-text PDF |
Source |
---|
Philos Trans R Soc Lond B Biol Sci
November 2024
Division of Biochemistry and Interdisciplinary Plant Grou, C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
The committed step for de novo fatty acid (FA) synthesis is the ATP-dependent carboxylation of acetyl-coenzyme A catalysed by acetyl-CoA carboxylase (ACCase). In most plants, ACCase is a multi-subunit complex orthologous to prokaryotes. However, unlike prokaryotes, the plant and algal orthologues are comprised both catalytic and additional dedicated regulatory subunits.
View Article and Find Full Text PDFmBio
May 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2023
Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
Mol Genet Metab
June 2023
Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh and Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:
Microbiology (Reading)
February 2023
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
One interference mechanism of bacterial competition is the production of antibiotics. Bacteria exposed to antibiotics can resist antibiotic inhibition through intrinsic or acquired mechanisms. Here, we performed a coevolution experiment to understand the long-term consequences of antibiotic production and antibiotic susceptibility for two environmental bacterial strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!