Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticles may contain unusual forms of structural disorder that can substantially modify materials properties and thus cannot solely be considered as small pieces of bulk material. We have developed a method to quantify intermediate-range order in 3.4-nanometer-diameter zinc sulfide nanoparticles and show that structural coherence is lost over distances beyond 2 nanometers. The zinc-sulfur Einstein vibration frequency in the nanoparticles is substantially higher than that in the bulk zinc sulfide, implying structural stiffening. This cannot be explained by the observed 1% radial compression and must be primarily due to inhomogeneous internal strain caused by competing relaxations from an irregular surface. The methods developed here are generally applicable to the characterization of nanoscale solids, many of which may exhibit complex disorder and strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1098454 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!