YscC is the integral outer membrane component of the type III protein secretion machinery of Yersinia enterocolitica and belongs to the family of secretins. This group of proteins forms stable ring-like oligomers in the outer membrane, which are thought to function as transport channels for macromolecules. The YscC oligomer was purified after solubilization from the membrane with a nonionic detergent. Sodium dodecyl sulfate did not dissociate the oligomer, but it caused a change in electrophoretic mobility and an increase in protease susceptibility, indicating partial denaturation of the subunits within the oligomer. The mass of the homo-oligomer, as determined by scanning transmission electron microscopy, was approximately 1 MDa. Analysis of the angular power spectrum from averaged top views of negatively stained YscC oligomers revealed a 13-fold angular order, suggesting that the oligomer consists of 13 subunits. Reconstituted in planar lipid bilayers, the YscC oligomer displayed a constant voltage-independent conductance of approximately 3 nS, thus forming a stable pore. However, in vivo, the expression of YscC did not lead to an increased permeability of the outer membrane. Electron microscopy revealed that the YscC oligomer is composed of three domains, two stacked rings attached to a conical domain. This structure is consistent with the notion that the secretin forms the upper part of the basal body of the needle structure of the type III secreton.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC438636PMC
http://dx.doi.org/10.1128/JB.186.14.4645-4654.2004DOI Listing

Publication Analysis

Top Keywords

type iii
12
outer membrane
12
yscc oligomer
12
yersinia enterocolitica
8
electron microscopy
8
yscc
7
oligomer
6
structure electrophysiological
4
electrophysiological properties
4
properties yscc
4

Similar Publications

Background: Mucopolysaccharidosis (MPS) is a class of hereditary metabolic diseases that demonstrate itself by accumulating incompletely degraded glycosaminoglycans (GAGs). MPS are classified according to the kind(s) of stored GAG(s) and specific genetic/enzymatic defects. Despite the accumulation of the same type of GAG, two MPS diseases, Sanfilippo (MPS III) and Morquio (MPS IV), are further distinguished into subclasses based on different enzymes that are deficient.

View Article and Find Full Text PDF

Four new macrolides, spirosnuolides A-D (-, respectively), were discovered from the termite nest-derived sp. INHA29. Spirosnuolides A-D are 18-membered macrolides sharing an embedded [6,6]-spiroketal functionality inside the macrocycle and are conjugated with structurally uncommon side chains featuring cyclopentenone, 1,4-benzoquinone, hydroxyfuroic acid, or butenolide moieties.

View Article and Find Full Text PDF

Background: Soft-tissue sarcoma involving the popliteal fossa remains challenging because it is difficult to achieve wide margins with limb salvage in this location. Adjuvant therapy is frequently necessary, and limb function can be adversely affected. We reviewed our experience with these tumors.

View Article and Find Full Text PDF

Introduction: There is scarce data in literature on the demographics, treatment, and outcomes of subtrochanteric femur fracture patients. This study evaluated the effect of age on injury details, perioperative and hospital parameters, and outcomes following subtrochanteric fracture fixation.

Methods: An IRB-approved review of a consecutive series of subtrochanteric femoral fractures was performed.

View Article and Find Full Text PDF

Popliteal artery entrapment syndrome has congenital and functional causes. It mostly affects young people. There are six types of popliteal artery entrapment syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!