Kaposi sarcoma (KS) is a multifocal angioproliferative neoplasm strictly dependent on angiogenic growth factors and cytokines and invariably associated with infection by the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8). A G protein-coupled receptor encoded by KSHV (vGPCR) is able to initiate KS-like tumors when targeted to the vascular endothelium of mice. Analogous to human KS, vGPCR sarcomagenesis involves the paracrine secretion of angiogenic growth factors and proinflammatory molecules from vGPCR-expressing cells. Here we demonstrate that vGPCR up-regulates expression and secretion of critical KS cytokines by stimulating key transcription factors, including nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1), and nuclear factor of activated T cells (NFAT), through the activation of the small G protein Rac1. Inhibition of Rac1 blocked vGPCR-induced transcription and secretion of KS cytokines, including interleukin-6 (IL-6), IL-8, and growth-regulated oncogene alpha (GROalpha), in vitro and reduced vGPCR tumorigenesis in vivo. Moreover, endothelial-specific infection with the constitutively active Rac1QL induced vascular lesions in mice that were remarkably similar to early vGPCR experimental lesions. These results identify Rac1 as a key mediator of vGPCR paracrine neoplasia, suggesting that this small G protein and its downstream effectors may represent suitable therapeutic targets for the treatment of KS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1182/blood-2003-12-4436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!