Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DNA vaccination appears as a very promising approach to raise protective antibodies against a variety of proteins from pathogens or tumor cells, but is often hindered by the low immunogenicity of the genetic vectors used for the immunizations. To enhance the humoral response through improvement of the antigenic presentation of newly synthesized proteins upon vaccination, we engineered a plasmid coding for a low immunogenic protein (an scFv, i.e. the single-chain Fragment variable of a well-characterized antibody) fused to a small-size universal T-helper cell epitope derived from tetanus toxin, whose efficiency in classical protein-based immunization protocols has already been demonstrated. We found that immunization of C57Bl/6 mice using this vector greatly enhanced the production not only of specific antibodies recognizing essentially conformational epitopes on the undenatured scFv protein but also of antibodies against linear epitopes on the denatured protein. Since this T-epitope is known to be accommodated by several haplotypes of H-2 molecules in mice, as well as by various class II MHC molecules in humans, the results reported here allow us to conclude that this method could be of general interest for future applications of genetic immunization, including DNA-based vaccinations in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/104454904323145281 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!