The crystal structure of the Haemophilus influenzae protein HI1480 was determined at 2.1-A resolution. The amino acid sequence of HI1480 is unique, having no homology with other known protein sequences. The protein adopts a novel alpha+beta fold, and associates into a dimer of tightly associated dimers. The tight dimers are formed by intermolecular interactions that are mediated by an antiparallel beta-barrel involving both monomers. Helical regions of two dimers mediate the tetramer formation. The helical region contains a four-helix bundle that has been seen only in the anticodon binding domains of class I tRNA synthetases. A cluster of four residues, Tyr18, Arg134, Glu26, and Lys12 is located in a depression formed at the four-helix bundle/ beta-barrel interface. The arrangement is suggestive of an active center, possibly a catalytic site. The HI1480 gene is located within the Mu-like prophage region of H. influenzae, has no homology to bacteriophage genes, and is flanked by transposases. Hence, this is an example of horizontal transfer from an unknown organism. Gel mobility shift assays revealed that HI1480 binds DNA and RNA molecules. Double-stranded DNA is favored over single-stranded DNA, and longer DNA molecules are bound better than shorter ones.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.20148DOI Listing

Publication Analysis

Top Keywords

haemophilus influenzae
8
influenzae protein
8
hi1480
5
novel structure
4
structure nucleotide
4
nucleotide binding
4
binding properties
4
properties hi1480
4
hi1480 haemophilus
4
protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!