Congenic and inbred strains of rats offer researchers invaluable insight into the etiopathogenesis of diabetes and associated complications. The inbred Bio-Breeding Zucker diabetic rat (BBZDR)/Wor rat strain is a relatively new and emerging model of type 2 diabetes. This strain was created by classical breeding methods used to introgress the defective leptin receptor gene (Lepr(fa)) from insulin-resistant Zucker fatty rats into the inbred BBDR/Wor strain background. The diabetic male BBZDR/Wor rat is homozygous for the fatty mutation and shares the genetic background of the original BB strain. Although lean littermates are phenotypically normal, obese juvenile BBZDR/Wor rats are hyperlipidemic and hyperleptinemic, become insulin resistant, and ultimately develop hyperglycemia. Furthermore, the BBZDR/Wor rat is immune competent and does not develop autoimmunity. Similar to patients with clinical diabetes, the BBZDR/Wor rat develops complications associated with hyperglycemia. The BBZDR/Wor rat is a model system that fully encompasses the ability to study the complications that affect human type 2 diabetic patients. In this review, recent work that has evaluated type 2 diabetic complications in BBZDR/Wor rats is discussed, including the authors' preliminary unpublished studies on cardiovascular disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ilar.45.3.292 | DOI Listing |
Background: This is an exploratory study using multimodal magnetic resonance imaging (MRI) to interrogate the brain of rats with type 2 diabetes (T2DM) as compared to controls. It was hypothesized there would be changes in brain structure and function that reflected the human disorder, thus providing a model system by which to follow disease progression with noninvasive MRI.
Methods: The transgenic BBZDR/Wor rat, an animal model of T2MD, and age-matched controls were studied for changes in brain structure using voxel-based morphometry, alteration in white and gray matter microarchitecture using diffusion weighted imaging with indices of anisotropy, and functional coupling using resting-state BOLD functional connectivity.
J Transl Med
June 2020
Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA.
Background: This is an exploratory study using a novel imaging modality, quantitative ultrashort time-to-echo, contrast enhanced (QUTE-CE) magnetic resonance imaging to evaluate the permeability of the blood-brain barrier in a rat model of type 2 diabetes with the presumption that small vessel disease is a contributing factor to neuropathology in diabetes.
Methods: The BBZDR/Wor rat, a model of type 2 diabetes, and age-matched controls were studied for changes in blood-brain barrier permeability. QUTE-CE, a quantitative vascular biomarker, generated angiographic images with over 500,000 voxels that were registered to a 3D MRI rat brain atlas providing site-specific information on blood-brain barrier permeability in 173 different brain areas.
Cells
April 2020
Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Retinal homeostasis is under both diurnal and circadian regulation. We sought to investigate the diurnal expression of autophagy proteins in normal rodent retina and to determine if this is impaired in diabetic retinopathy. C57BL/6J mice and Bio-Breeding Zucker (BBZ) rats were maintained under a 12h/12h light/dark cycle and eyes, enucleated over a 24 h period.
View Article and Find Full Text PDFWounds
January 2019
Organogenesis Inc, Research and Development, Birmingham, AL.
Introduction: Healing of tendon injuries is often plagued by significant scar formation and compromised biomechanical function. For those with diabetes, these injuries are further complicated by alterations to the extracellular matrix of the tendon, poor circulation, and delayed wound healing; consequently, complications and re-rupture rates for patients with diabetes are reported higher than the typical patient population. Placental derived membranes, specifically dehydrated human amnion/chorion membranes (dACMs), have been utilized clinically as an adhesion barrier, and these membranes have been shown to reduce scarring and aid in tissue repair.
View Article and Find Full Text PDFPLoS One
April 2016
Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States of America; Department of Ophthalmology, Wayne State University, Detroit, Michigan, United States of America; VA Medical Center, Memphis, Tennessee, United States of America.
Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!