Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms.

Am J Physiol Cell Physiol

Section of Gastrointestinal Sciences, Faculty of Medicine, University of Manchester, Salford M6 5HD, United Kingdom.

Published: November 2004

On interaction with the intestine, the mycotoxin ochratoxin A is know to cause rapid inflammation, diarrhea, and increased bacterial translocation. All these effects are consistent with a decrease in epithelial barrier function. However, this has not been shown directly. We determined that ochratoxin A is able to reduce the barrier properties of the model intestinal cell line Caco-2. Over 24 h, ochratoxin A reduces the transepithelial electrical resistance of Caco-2 monolayers growing on Transwell filters by approximately 40%. At the same time, the permeability of the monolayer is increased with respect to 4- and 10-kDa FITC dextrans, but not to 20- or 40-kDa dextrans. Immunoblotting and immunofluorescence reveal that the decrease in barrier properties is concomitant with disappearance of claudins 3 and 4, but not claudin 1 from Caco-2 cell membranes. These results suggest that ochratoxin A is able to modulate the barrier function of Caco-2 cells by removal of specific claudin isoforms.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00007.2004DOI Listing

Publication Analysis

Top Keywords

removal specific
8
specific claudin
8
claudin isoforms
8
barrier function
8
barrier properties
8
ochratoxin
5
ochratoxin increases
4
increases permeability
4
permeability tight
4
tight junctions
4

Similar Publications

Introduction: Hemoperfusion (HP), a blood filtration method targeting the removal of toxins and inflammatory elements, was investigated in this study. The objective was to present the observations in four individuals with confirmed COVID-19 who underwent several rounds of HP utilizing the HA330 cartridge at a hospital in Indonesia.

Case Studies: We report four cases of COVID-19 patients who underwent HP.

View Article and Find Full Text PDF

Nevoid basal cell carcinoma syndrome (Gorlin syndrome): a case report.

J Med Case Rep

January 2025

Department of Dermatology and Venereology, Faculty of Medicine, University of Aleppo, Aleppo, Syria.

Background: Basal cell nevus syndrome, also known as Gorlin or Gorlin-Goltz syndrome, is a hereditary condition caused by mutation in the PATCHED gene. The syndrome presents with a wide range of clinical manifestations, including basal cell carcinomas, jaw cysts, and skeletal anomalies. Diagnosis is based on specific criteria, and treatment typically includes surgical removal of basal cell carcinomas.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Development of an in vivo ovarian cancer peritoneal carcinomatosis model for radioimmunotherapy testing.

Methods Cell Biol

January 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France. Electronic address:

Currently, Ovarian Cancer (OC) is the most lethal gynecological malignancy. In most patients, it progresses without clinical signs or symptoms, leading to a late diagnosis when it has already spread in the peritoneal cavity as peritoneal carcinomatosis (PC). To date, OC PC management is based on cytoreductive surgery to remove the macroscopic disease, followed by chemotherapy.

View Article and Find Full Text PDF

For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!