Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes.

Anal Chem

Laboratoire Physicochimie-Curie, UMR/CNRS 168, Institut Curie, 26 Rue d'Ulm, 75248 Paris Cedex 5, France.

Published: July 2004

We present an experimental study of the microfluidic electrophoresis of long DNA in self-assembling matrixes of magnetic bead columns. Results are presented for the rapid separation of lambda-phage, 2lambda-DNA, and bacteriophage T4 DNA, where separation resolutions greater than 2 between lambda and T4 are achieved in times as short as 150 s. The use of a computer-piloted flow control system and injection results in high reproducibility between separations. We compare the experimentally measured mobility and dispersion with an exactly solvable lattice Monte Carlo model. The theory predicts that the mean velocity scales linearly with the field, the band broadening scales with the inverse of the field, and the resolution is independent of the field for intermediate fields-all of which are in accord with the experimental results. Moreover, reasonable quantitative agreement is achieved for band broadening for longer DNA (2lambda and T4) when the average postengagement time is measured experimentally. This work demonstrates the possibility of achieving fast microfluidic separation of large DNA on a routine basis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac035246bDOI Listing

Publication Analysis

Top Keywords

microfluidic separation
8
band broadening
8
dna
5
quantitative microfluidic
4
separation
4
separation dna
4
dna self-assembled
4
self-assembled magnetic
4
magnetic matrixes
4
matrixes experimental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!