Chemistry, pharmacology, toxicology, and hepatic metabolism of designer drugs of the amphetamine (ecstasy), piperazine, and pyrrolidinophenone types: a synopsis.

Ther Drug Monit

Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Saarland, D-66421 Homburg (Saar), Germany.

Published: April 2004

Designer drugs of the amphetamine type (eg, MDMA, MDEA, MDA), of the new benzyl or phenyl piperazine type (eg, BZP, MDBP, mCPP, TFMPP, MeOPP), or of the pyrrolidinophenone type (eg, PPP, MOPPP, MDPPP, MPPP, MPHP) have gained popularity and notoriety as rave drugs. These drugs produce feelings of euphoria and energy and a desire to socialize. Although in the corresponding drug scene designer drugs have the reputation of being safe, studies in rats and primates in combination with human epidemiologic investigations indicate potential risks to humans. Thus, a variety of adverse effects have been associated with the use/abuse of this class of drugs in humans, including a life-threatening serotonin syndrome, hepatotoxicity, neurotoxicity, and psychopathology. Metabolites were suspected to contribute to some of the toxic effects. Therefore, knowledge of the metabolism is a prerequisite for toxicologic risk assessment. The metabolic pathways, the involvement of cytochrome P450 isoenzymes in the main pathways, and their roles in hepatic clearance are described for designer drugs of different groups. In summary, polymorphically expressed CYP2D6 was the major enzyme catalyzing the major metabolic steps of the studied piperazine- and pyrrolidinophenone-derived designer drugs. However, it cannot be concluded at the moment whether this genetic polymorphism is of clinical relevance.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00007691-200404000-00007DOI Listing

Publication Analysis

Top Keywords

designer drugs
20
drugs
8
drugs amphetamine
8
designer
5
chemistry pharmacology
4
pharmacology toxicology
4
toxicology hepatic
4
hepatic metabolism
4
metabolism designer
4
amphetamine ecstasy
4

Similar Publications

Toxicodynamic insights of 2C and NBOMe drugs - Is there abuse potential?

Toxicol Rep

June 2025

Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.

Drug use represents a prevalent and multifaceted societal problem, with profound implications for public health, social welfare, and economic stability. To circumvent strict international drug control regulations, there is a growing trend in the development and market introduction of novel psychoactive substances (NPS), encompassing a wide range of compounds with psychoactive properties. This includes, among other classes of drugs, the phenethylamines.

View Article and Find Full Text PDF

Identification of N,N-dimethylpentylone (DMP) in counterfeit "Ecstasy" and "Molly" tablets poses risk to public health due to its adverse effects. Little information is available regarding the pharmacological activity or relevant blood or tissue concentrations of DMP, and even less is known about other structurally related beta-keto methylenedioxyamphetamine analogues on recreational drug markets, such as N-propyl butylone. Here, a novel toxicological assay utilizing liquid chromatography-tandem quadrupole mass spectrometry (LC-QQQ-MS) was developed and validated for the quantitation of DMP and five related synthetic cathinones (eutylone, pentylone, N-ethyl pentylone (NEP), N-propyl butylone, and N-cyclohexyl butylone), with chromatographic resolution from isomeric variants and quantitation performed by standard addition.

View Article and Find Full Text PDF

Comprehensive evaluation of the toxicological effects of commonly encountered synthetic cathinones using in silico methods.

Toxicol Res (Camb)

February 2025

Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Synthetic cathinones (SCs), a group of new psychoactive substances (NPS), are designer molecules with hallucinogenic and psychostimulatory effects. Although the structural similarities of SCs to amphetamines suggest that they may have similar toxicity profiles to those of amphetamine congeners, little is known about SCs from a toxicological point of view. In the present study, the toxicity profiles of commonly encountered SCs ( = 65), listed in the 2020 Report of the United Nations Office on Drugs and Crime (UNODC), were evaluated using in silico methods.

View Article and Find Full Text PDF

Chronic stress typically leads to deficits in fear extinction. However, when a delay occurs from the end of chronic stress and the start of fear conditioning (a "recovery"), rats show improved context-cue discrimination, compared to recently stressed rats or nonstressed rats. The infralimbic cortex (IL) is important for fear extinction and undergoes neuronal remodeling after chronic stress ends, which could drive improved context-cue discrimination.

View Article and Find Full Text PDF

3,4-methylenedioxymethamphetamine (MDMA; commonly referred to as "ecstasy" or "molly") is a substituted amphetamine drug that is used recreationally for its acute psychoactive effects, including euphoria and increased energy, as well as prosocial effects such as increased empathy and feelings of closeness with others. Acute adverse effects can include hyperthermia, dehydration, bruxism, and diaphoresis. Post-intoxication phenomena may include insomnia, anhedonia, anxiety, depression, and memory impairment, which can persist for days following drug cessation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!