We have cloned two distinct cDNAs encoding salmon-type calcitonin (sCT)-I cDNAs from the ultimobranchial gland of rainbow trout, Oncorhynchus mykiss. Both cDNAs were predicted to encode nearly identical sCT-I precursors which consisted of an N-terminal peptide of 80 amino acid residues, a putative cleavage site Lys-Arg, sCT-I, a cleavage and amidation sequence Gly-Lys-Lys-Arg, and a C-terminal peptide of 18 amino acids. Development of sCT-I-expressing cells was then examined by employing conventional histochemical staining, in situ hybridization with a specific cRNA probe, and further immunohistochemistry. The primordium of the ultimobranchial gland was first identified, as two cell masses, in the region between the alimentary canal and sinus venosus behind the heart 17 days postfertilization (dpf; 14 degrees C). However, expression of sCT-I mRNA could not be detected in this gland until one day later, and appeared at 18 dpf. sCT-I immunoreactivity was first observed at 19 dpf (two days before hatching), and the ultimobranchial gland began to assume a follicular structure at 20 dpf (one days before hatching). As ontogeny proceeded, the sCT-I-immunoreactive cells increased in both number and stainability. The sCT-I mRNA was also expressed on the developing gill filaments, but immunoreactive sCT-I was not detected in these sites. These results provide basic data for further research on the organogenesis of the trout ultimobranchial gland.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2108/zsj.21.629 | DOI Listing |
Histochem Cell Biol
November 2024
School of Medicine, Department of Normal and Pathological Cytology and Histology, University of Seville, Av. Sánchez Pizjuán S/N, 41009, Seville, Andalucía, Spain.
The primary cilium (PC) is a biosensor with diverse functions, depending on cellular type. In the thyroid, where it was first described, PCs are located at the apical pole of the follicular epithelium, sensing the lumen's environment. They probably contribute to follicular homeostasis, although their presence in other thyroid epithelial cells remains unclear.
View Article and Find Full Text PDFDevelopment
October 2024
Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
Vertebrate calcitonin-producing cells (C-cells) are neuroendocrine cells that secrete the small peptide hormone calcitonin in response to elevated blood calcium levels. Whereas mouse C-cells reside within the thyroid gland and derive from pharyngeal endoderm, avian C-cells are located within ultimobranchial glands and have been reported to derive from the neural crest. We use a comparative cell lineage tracing approach in a range of vertebrate model systems to resolve the ancestral embryonic origin of vertebrate C-cells.
View Article and Find Full Text PDFJ Vet Diagn Invest
January 2024
Departamento de Clínica Médica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.
A 9-y-old Mangalarga Marchador gelding was referred to a veterinary hospital because of a swelling on the upper right side of the neck. Ultrasound examination revealed a multilocular structure adjacent to the thyroid gland with low echogenic content suggestive of fluid. The mass was removed surgically.
View Article and Find Full Text PDFVet Med Sci
March 2023
Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Andalucía, Spain.
Background: In mammals, the thyroid gland possesses two types of endocrine cells, follicular cells and C cells, which have different functions but share a similar endodermal origin (although from different regions of the primitive pharynx). Specifically, follicular cells derive from the ventral pharyngeal floor, while C cells derive from the fourth pair of pharyngeal pouches through the ultimobranchial bodies (UBBs). Disruptions to human midline thyroid morphogenesis are relatively frequent and known as thyroid dysgenesis, which is the leading cause of congenital hypothyroidism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!