Despite intensive in vitro studies, little is known about the regulation of caldesmon (CaD) by Ca(2+)-calmodulin (Ca(2+)-CaM) in vivo. To investigate this regulation, a mutant was generated of the C-terminal fragment of human fibroblast CaD, termed CaD39-AB, in which two crucial tryptophan residues involved in Ca(2+)-CaM binding were each replaced with alanine. The mutation abolished most CaD39-AB binding to Ca(2+)-CaM in vitro but had little effect on in vitro binding to actin filaments and the ability to inhibit actin/tropomyosin-activated heavy meromyosin ATPase. To study the functional consequences of these mutations in vivo, we transfected an expression plasmid carrying CaD39-AB cDNA into Chinese hamster ovary (CHO) cells and isolated several clones expressing various amounts of CaD39-AB. Immunofluorescence microscopy revealed that mutant CaD39-AB was distributed diffusely throughout the cytoplasm but also concentrated at membrane ruffle regions. Stable expression of CaD39-AB in CHO cells disrupted assembly of stress fibers and focal adhesions, altered cell morphology, and slowed cell cycle progression. Moreover, CaD39-AB-expressing cells exhibited motility defects in a wound-healing assay, in both velocity and the persistence of translocation, suggesting a role for CaD regulation by Ca(2+)-CaM in cell migration. Together, these results demonstrate that CaD plays a crucial role in mediating the effects of Ca(2+)-CaM on the dynamics of the actin cytoskeleton during cell migration.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.01216DOI Listing

Publication Analysis

Top Keywords

assembly stress
8
stress fibers
8
cell morphology
8
cho cells
8
cell migration
8
cad39-ab
6
cell
5
ca2+-cam
5
caldesmon mutant
4
mutant defective
4

Similar Publications

Huntington's Disease (HD), a progressive neurodegenerative disorder with no disease-modifying therapies, is caused by a CAG repeat expansion in the HD gene encoding polyglutamine-expanded huntingtin (HTT) protein. Mechanisms of HD cellular pathogenesis and cellular functions of the normal and mutant HTT proteins are still not completely understood. HTT protein has numerous interaction partners, and it likely provides a scaffold for assembly of multiprotein complexes many of which may be altered in HD.

View Article and Find Full Text PDF

Mono(ADP-ribosyl)ation (MARylation) is emerging as a critical regulator of ribosome function and translation. Herein, we demonstrate that RACK1, an integral component of the ribosome, is MARylated by the mono(ADP-ribosyl) transferase (MART) PARP14 in ovarian cancer cells. MARylation of RACK1 is required for stress granule formation and promotes the colocalization of RACK1 in stress granules with G3BP1, eIF3η, and 40S ribosomal proteins.

View Article and Find Full Text PDF

Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock.

FASEB J

January 2025

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Article Synopsis
  • Molecular chaperones are essential for maintaining protein balance, and loss of Smyd1b in zebrafish leads to disorganized muscle fibers and increased heat shock protein expression.
  • RNA sequencing revealed that the upregulated heat shock proteins, particularly Hsp70s, are important for myosin folding and assembly in muscle cells.
  • Additionally, Hsf1 is crucial for activating heat shock gene expression during stress, with its absence exacerbating muscle issues in Smyd1b mutants and decreasing survival under heat stress.
View Article and Find Full Text PDF

Hydrophobic dual-polymer-reinforced graphene composite aerogel for efficient water-oil separation.

RSC Adv

January 2025

Hainan Provincial Key Laboratory of Natural Rubber Processing, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences Zhanjiang 524001 P. R. China

Addressing the environmental challenges posed by oil spills and industrial wastewater is critical for sustainable development. Graphene aerogels demonstrate significant potential as highly efficient adsorbents due to their high specific surface area, excellent structural tunability and outstanding chemical stability. Among available fabrication methods, the hydrothermal self-assembly technique stands out for its low cost, high tunability and good scalability.

View Article and Find Full Text PDF

During the extraction of membrane proteins from oil bodies (OBs), organic solvents dissolve the lipid core and precipitate proteins through solvent stress. Here the effects of solvent type and defatting sequence on the composition and structure of membrane proteins were investigated SDS-PAGE, FTIR, and SEM-EDS. High purity oleosin (86 %) was obtained by treatment first with a Floch solution and then with cold acetone and petroleum ether after twice washing OBs with urea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!