A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of 25-hydroxyvitamin d-1alpha-hydroxylase by IFNgamma in human monocytic THP1 cells. | LitMetric

Regulation of 25-hydroxyvitamin d-1alpha-hydroxylase by IFNgamma in human monocytic THP1 cells.

J Steroid Biochem Mol Biol

Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium.

Published: May 2004

1,25-DihydroxyVitamin D(3) (1,25(OH)(2)D(3)), a molecule with well-known actions in bone and mineral homeostasis, also plays a role in the immune system. Indeed, the receptor for 1,25(OH)(2)D(3) is found in most immune cells and important immunological effects have been described in vitro, reflected by its capacity to prevent autoimmunity and to prolong graft survival. The aim of this study was to elucidate the intracellular pathways used by the immune system to regulate 1,25(OH)(2)D(3) production. Therefore we studied the regulation of 25-hydroxyvitamin-D-1alpha-hydroxylase (1alpha hydroxylase) in THP1 cells by IFNgamma, demonstrating that its induction is highly dependent on the activation/differentiation by PMA and occurred at a late time point (140-fold at 72 h, P < 0.05). Complete inhibition with actinomycin D indicated that the observed induction was, at least in part, a transcriptional event. Dose-dependent inhibition with cycloheximide demonstrated that the induction was dependent on "de novo" protein synthesis, a finding that correlates with the late time point of up-regulation. The data presented indicate a role for 1,25(OH)(2)D(3), activated by 1alpha hydroxylase, as a late down-tapering signal in the immune cascade.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsbmb.2004.03.015DOI Listing

Publication Analysis

Top Keywords

thp1 cells
8
immune system
8
1alpha hydroxylase
8
late time
8
time point
8
regulation 25-hydroxyvitamin
4
25-hydroxyvitamin d-1alpha-hydroxylase
4
d-1alpha-hydroxylase ifngamma
4
ifngamma human
4
human monocytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!