17beta-Estradiol enhances neuronal differentiation of mouse embryonic stem cells.

FEBS Lett

Department of Physiology, East Carolina University School of Medicine, Brody Bldg. #6N-98, 600 Moye Blvd., Greenville, NC 27858, USA.

Published: July 2004

Existing protocols show a variety in the percentage of neurons that can be generated from mouse embryonic stem (ES) cells. In the current study, we compared effects of various differentiating conditions, including gelatin and poly-l-ornithine/fibronectin coatings, and NGF and 17beta-estradiol treatments on the total yield of neurons, as well as, neurite growth and branching. Here, we show that combination of fibronectin coating with 17beta-estradiol increased number of generated neurons over 50%. Poly-l-ornithine/fibronectin increased the percent of neurons in all cultures, suggesting its direct influence on neurogenesis. Addition of 17beta-estradiol reduced mean neurite length in culture, but significantly increased branching. Our results indicate a substrate-dependent regulation of estrogen-induced ES cells differentiation into neuronal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2004.05.042DOI Listing

Publication Analysis

Top Keywords

mouse embryonic
8
embryonic stem
8
stem cells
8
17beta-estradiol
4
17beta-estradiol enhances
4
enhances neuronal
4
neuronal differentiation
4
differentiation mouse
4
cells
4
cells existing
4

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge.

View Article and Find Full Text PDF

Despite significant advancements in gene delivery and CRISPR technology, several challenges remain. Chief among these are overcoming serum inhibition and achieving high transfection efficiency with minimal cytotoxicity. To address these issues, there is a need for novel vectors that exhibit lower toxicity, maintain stability in serum-rich environments, and effectively deliver plasmids of various sizes across diverse cell types.

View Article and Find Full Text PDF

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!