The effects of mixotrophy on the stability and dynamics of a simple planktonic food web model.

Theor Popul Biol

Centre de Recherches sur la Cognition Animale, Bât 4R3-b3, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France.

Published: August 2004

Recognition of the microbial loop as an important part of aquatic ecosystems disrupted the notion of simple linear food chains. However, current research suggests that even the microbial loop paradigm is a gross simplification of microbial interactions due to the presence of mixotrophs-organisms that both photosynthesize and graze. We present a simple food web model with four trophic species, three of them arranged in a food chain (nutrients-autotrophs-herbivores) and the fourth as a mixotroph with links to both the nutrients and the autotrophs. This model is used to study the general implications of inclusion of the mixotrophic link in microbial food webs and the specific predictions for a parameterization that describes open ocean mixed layer plankton dynamics. The analysis indicates that the system parameters reside in a region of the parameter space where the dynamics converge to a stable equilibrium rather than displaying periodic or chaotic solutions. However, convergence requires weeks to months, suggesting that the system would never reach equilibrium in the ocean due to alteration of the physical forcing regime. Most importantly, the mixotrophic grazing link seems to stabilize the system in this region of the parameter space, particularly when nutrient recycling feedback loops are included.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tpb.2004.02.001DOI Listing

Publication Analysis

Top Keywords

food web
8
web model
8
microbial loop
8
region parameter
8
parameter space
8
food
5
effects mixotrophy
4
mixotrophy stability
4
stability dynamics
4
dynamics simple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!