Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. In this study, a neutralizing mouse monoclonal antibody against botulinum neurotoxin serotype B (BoNT/B), named BTBH-N1, was developed from mice immunized with BoNT/B toxoid without non-toxic components, which are generally associated with the toxin. Western blot analysis, using recombinant toxin fragments containing light (L), N-terminal half of heavy (HN) and C-terminal half of heavy chains, indicated that BTBH-N1 recognizes linear epitopes located on the HN domain. An in vivo neutralization assay with mice, was conducted to characterize the neutralization capacity of the BTBH-N1. Only 10 microg of BTBH-N1 completely neutralized 20 units (1 unit = one 50% lethal dose) of BoNT/B. Even though the Mab (up to 100 microg) failed to protect mice challenged with 100 units, it significantly prolonged the time to death in a dose dependent manner. BTBH-N1, the first neutralizing antibody against BoNT/B, could be further developed as effective biological therapeutics for preventing and treating botulism, as well as other diseases caused by BoNT/B.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2004.03.016 | DOI Listing |
Nature
January 2025
Department of Mathematics & Computer Science, Freie Universität Berlin, Berlin, Germany.
Since the onset of the pandemic, many SARS-CoV-2 variants have emerged, exhibiting substantial evolution in the virus' spike protein, the main target of neutralizing antibodies. A plausible hypothesis proposes that the virus evolves to evade antibody-mediated neutralization (vaccine- or infection-induced) to maximize its ability to infect an immunologically experienced population. Because viral infection induces neutralizing antibodies, viral evolution may thus navigate on a dynamic immune landscape that is shaped by local infection history.
View Article and Find Full Text PDFJ Infect Public Health
January 2025
Clinical Research Department, Pasteur Institute of Iran, No 69, Pasteur Ave., Tehran, Iran. Electronic address:
Background: Given the limited available data about to the number of vaccine doses administered over an extended time in Iran, the immune status of vaccinated individuals and any potential disparities in this regard among those who received different numbers of vaccine doses remain unknown. Therefore, this study aimed to assess humoral immunity of individuals who received different doses of the COVID-19 vaccines in Iran.
Methods: This study was conducted from February, 2022 to December 2023 including 605 vaccinated subjects.
Sci Adv
January 2025
Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
Background: The emergence of novel SARS-CoV-2 variants challenges immunity, particularly among immunocompromised kidney transplant recipients (KTRs). To address this, vaccines have been adjusted to circulating variants. Despite intensive vaccination efforts, SARS-CoV-2 infections surged among KTRs during the Omicron wave, enabling a direct comparison of variant-specific immunity following-vaccination against Omicron BA.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
The non-polio Enteroviruses (NPEVs), consist of enteroviruses, coxsackieviruses, echoviruses, and rhinoviruses, are causative agents for a wide variety of diseases, ranging from common cold to encephalitis and acute flaccid paralysis (AFP). In recent years, several NPEVs have become serious public health threats, include EV-A71, which has caused epidemics of hand-foot-and-mouth disease (HMFD) in Southeast Asia, and EV-D68, which caused outbreaks of severe respiratory disease in children worldwide. Infections with these viruses are associated with neurological diseases like aseptic meningitis and AFP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!