The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis.

Mol Cell

Max F. Perutz Laboratories, University of Vienna and Gregor Mendel Institute of Molecular Plant Sciences, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria.

Published: July 2004

The Arabidopsis mitogen-activated protein kinase (MAPK) kinase 2 (MKK2) and the downstream MAPKs MPK4 and MPK6 were isolated by functional complementation of osmosensitive yeast mutants. In Arabidopsis protoplasts, MKK2 was specifically activated by cold and salt stress and by the stress-induced MAPK kinase kinase MEKK1. Yeast two-hybrid, in vitro, and in vivo protein kinase assays revealed that MKK2 directly targets MPK4 and MPK6. Accordingly, plants overexpressing MKK2 exhibited constitutive MPK4 and MPK6 activity, constitutively upregulated expression of stress-induced marker genes, and increased freezing and salt tolerance. In contrast, mkk2 null plants were impaired in MPK4 and MPK6 activation and were hypersensitive to salt and cold stress. Full genome transcriptome analysis of MKK2-overexpressing plants demonstrated altered expression of 152 genes involved in transcriptional regulation, signal transduction, cellular defense, and stress metabolism. These data identify a MAP kinase signaling cascade mediating cold and salt stress tolerance in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2004.06.023DOI Listing

Publication Analysis

Top Keywords

mpk4 mpk6
16
cold salt
12
salt stress
12
protein kinase
8
mapk kinase
8
mkk2
6
kinase
6
salt
5
stress
5
mkk2 pathway
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!