A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HB-107, a nonbacteriostatic fragment of the antimicrobial peptide cecropin B, accelerates murine wound repair. | LitMetric

Antimicrobial peptides are essential to innate host defense as effectors of pathogen clearance and can modify host cell behaviors to promote wound repair. While these two functions appear interrelated, it is unclear whether the ability to aid in wound repair requires inherent antimicrobial function. We hypothesized that the influence of antimicrobial peptides on wound repair is not dependent on antimicrobial function. To explore this, we analyzed the microbial killing activity of peptide fragments and correlated this with the ability to influence wound repair in mice. HB-107, a peptide lacking antimicrobial activity and originally derived from the antimicrobial cecropin B, showed up to 64 percent improvement in wound repair compared to scrambled peptide and vehicle controls, an effect comparable to treatment with recombinant human platelet-derived growth factor-BB (formulated as Regranex). Wounds treated with HB-107 showed keratinocyte hyperplasia and increased leukocyte infiltration. Furthermore, HB-107 stimulated interleukin-8 secretion from cultured endothelial cells, an effect that may explain the increase in leukocyte migration. These findings confirm that antimicrobial peptides can function as effectors of cutaneous wound repair. Moreover, this study furthers our understanding of antimicrobial peptides by showing that their wound repair properties can be independent of antimicrobial function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1067-1927.2004.012303.xDOI Listing

Publication Analysis

Top Keywords

wound repair
32
antimicrobial peptides
16
antimicrobial function
12
antimicrobial
10
wound
8
repair
8
hb-107
4
hb-107 nonbacteriostatic
4
nonbacteriostatic fragment
4
fragment antimicrobial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!