The degradation kinetics of moricizine hydrochloride (1) were examined over a pH range of 0.6 to 6.0 at an ionic strength of 0.3 and 60 degrees C. The disappearance of intact 1 was followed by a stability-indicating HPLC assay. The degradation products, which had approximate solubilities of less than 100 micrograms/mL, precipitated in aqueous solution. The precipitate was collected for HPLC analysis and identification of degradation products. Degradation of 1 was catalyzed by acetate and phosphate buffers and was pH dependent, with the pH of the minimum rate constant located between 2.8 and 3.2. At pH 0.6-2.0, 1 degraded via amide hydrolysis to yield first ethyl (10H-phenothiazin-2-yl) carbamate (2), an amide hydrolysis product, which further oxidized in parallel to give ethyl (3-oxo-3H-phenothiazin-2-yl) carbamate (3), ethyl (10H-phenothiazin-2-yl) carbamate S-oxide (4), and diethyl (3,10'-bi-10H-phenothiazine-2,2'-diyl)bis(carbamate) (5), the dimer of the amide hydrolysis product. At pH 2.2-6.0, 1 degraded via a reverse Mannich reaction, to form the reverse Mannich product ethyl [10-(1-oxo-2-propenyl)-10H-phenothiazin-2-yl] carbamate (6), and by parallel reaction via the described amide hydrolysis pathway. The dimer of the amide hydrolysis product was not detectable at pH greater than 2.8. At pH greater than 4.0, the reverse Mannich product was the predominant degradation product. Degradation of 1 was subject to positive and negative kinetic salt effects at pH 1.0 and 4.0, respectively. Arrhenius plots determined at pH 1.0 and 6.0 were linear between 37 and 70 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.2600810625 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!