Hippocampus
Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA.
Published: August 2004
Glutamatergic influence on the medial septum diagonal band of Broca complex (MSDB) is a crucial and powerful driver of hippocampal theta rhythm and associated memory processes, in the rat. The recent discovery of vesicular glutamate transporters (VGLUT) provided a specific marker for glutamatergic neuronal elements. Therefore, this study aimed to address two specific questions: (1) do glutamatergic axons innervate MSDB gamma-aminobutyric acid (GABA)ergic, parvalbumin (PV)-containing septohippocampal neurons that are known to have a great influence on the electric activity of the hippocampus; and (2) is the origin of these glutamatergic axons extrinsic and/or intrinsic to the septum. The results of the correlated light and electron microscopic double-labeling immunohistochemistry for VGLUT2 and PV, and single immunostaining for VGLUT2 in colchicine-treated animals, showed that (1) VGLUT2-containing boutons establish asymmetric synaptic contacts with PV-positive perikarya and dendrites; (2) a large population of VGLUT2-immunoreactive neurons is located primarily in the posterior division of the septum; and (3) following surgical fimbria/fornix transection and septal undercut, most VGLUT2-containing axons, including those terminating on MSDB PV cells, remains intact. The latter two observations suggest that the major portion of MSDB glutamate axons have an intraseptal origin and raise a novel functional aspect of glutamatergic cells as local circuit neurons. A constant impulse flow in the septohippocampal GABA pathway is essential for the generation of theta rhythm. Thus, the heavy glutamatergic innervation of these septohippocampal GABA cells establishes the morphological basis for the powerful glutamatergic influence upon theta rhythm and hippocampus-associated memory processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hipo.10195 | DOI Listing |
Entropy (Basel)
January 2025
School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou 510665, China.
Emotion recognition is an advanced technology for understanding human behavior and psychological states, with extensive applications for mental health monitoring, human-computer interaction, and affective computing. Based on electroencephalography (EEG), the biomedical signals naturally generated by the brain, this work proposes a resource-efficient multi-entropy fusion method for classifying emotional states. First, Discrete Wavelet Transform (DWT) is applied to extract five brain rhythms, i.
View Article and Find Full Text PDFPLoS Biol
January 2025
Carney Institute for Brain Science, Department of Cognitive & Psychological Sciences, Brown University, Providence, Rhode Island, United States of America.
The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
We perceive our surrounding as a continuous stream of information. Yet, it is under debate, whether our brain processes the incoming information continuously or rather in a discontinuous way. In recent years, the idea of rhythmic perception has regained popularity, assuming that parieto-occipital alpha oscillations are the neural mechanism defining the rhythmicity of visual perception.
View Article and Find Full Text PDFBrain Behav
January 2025
Division of Brain, Imaging and Behavior, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.
Purpose: Pain is inherently salient and so draws our attention in addition to impacting performance on attention-demanding tasks. Individual variability in pain-attention interactions can be assessed by two kinds of behavioral phenotypes that quantify how individuals prioritize pain versus attentional needs. The intrinsic attention to pain (IAP) measure quantifies the degree to which a person attends to pain (high-IAP) or mind-wanders away from pain (low-IAP).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bio & Healing Convergence, Konkuk University, Seoul, 05029, Republic of Korea.
This study investigated the psychophysiological and metabolomic changes during horticultural activities involving the inhalation of volatile organic compounds (VOCs) in individuals experiencing depressive mood based on the presence or absence of the soil microbe Streptomyces rimosus, which emits VOCs. Thirty participants met the specific depression and anxiety criteria and engaged in horticultural activities using soil inoculated with S. rimosus (experimental group) or medium (control group).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.