Ex vivo maintainance of human stem cells is crucial for many clinical applications. Current culture conditions provide some level support but cytokines induce most quiescent stem cells to proliferate and differentiate. Better control of primitive cells is needed to extend the time and range of manipulation of such cells. A recently identified plant lectin Flt3 receptor-interacting lectin (FRIL) present may a special ability to preserve primitive CB progenitors for extended periods in culture without exogenous cytokines. But the mechanisms of FRIL preserving quiescent primitive cells are still unknown. Recently a novel protein HTm4 and its alternatively spliced variant HTm4S, which serve as hematopoietic cell cycle regulators, have been identified. In this report we studied the effect of FRIL on the in vitro maintenance of quiescent human cord blood stem cells and the expression of the novel hematopoietic cell cycle regulator HTm4 and HTm4S in progenitor cells cultured in FRIL. We analyzed the proliferation and the HPP-CFC proportion of CD34(+) cells treated with FRIL. The human HTm4 and HTm4S mRNA expression was detected by semi-quantitative RT-PCR, and the cell cycle status of CB CD34(+) cells was analyzed by FACS. The results showed that incubation of CD34(+) cells in FRIL resulted in a low proliferation of progenitor cells and fewer cycling cells, but FRIL selectively maintained a higher number of primitive cells with proliferative potential in suspension culture. CB CD34(+) cells cultured in FRIL showed significant diversity in the expression of HTm4 and HTm4S during 0~14 d. On d 0, HTm4 was detected at high level, downregulated on d 1, but upregulated during d 3 to d 14, and reaching the highest level on d 7. But the expression levels of HTm4S changed little in the cells cultured in FRIL except the obviously increased expression on d 7. Exogenous expression showed that HTm4 was localized around the karyon while HTm4S scatted in the cytoplasm, respectively, which may be responsible for their difference in function. Thus, FRIL can preserve quiescent primitive CD34(+), and FRIL's ability to preserve quiescent primitive cells in a reversible manner may significantly expand the time and range of ex vivo manipulations of human stem cells for clinical applications. In other words, HTm4 and HTm4S may play a crucial role in the cell cycle modulation of CD34(+) progenitor cells maintained with FRIL in vitro.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell cycle
20
cells
19
progenitor cells
16
stem cells
16
primitive cells
16
htm4 htm4s
16
cd34+ cells
16
fril
12
fril vitro
12
quiescent primitive
12

Similar Publications

Environmental Impacts of Cultured Meat: A Cradle-to-Gate Life Cycle Assessment.

ACS Food Sci Technol

January 2025

Department of Food Science and Technology, University of California, Davis, California 95616, United States.

Interest in animal cell-based meat (ACBM) as an environmentally conscious replacement for livestock production has been increasing; however, a life cycle assessment (LCA) for the existing production methods of ACBM has not been conducted. Currently, ACBM products are being produced at a small scale, but ACBM companies are intending to scale-up production. Updated findings from recent technoeconomic assessments (TEAs) of ACBM were utilized to perform an LCA of near-term ACBM production.

View Article and Find Full Text PDF

Introduction: The deficiency of estrogen correlates with a range of diseases, notably Postmenopausal osteoporosis (PMO) and Parkinson's disease (PD). There is a possibility that PMO and PD may share underlying molecular mechanisms that are pivotal in their development and progression. The objective of this study was to identify critical genes and potential mechanisms associated with PMO by examining co-expressed genes linked to PD.

View Article and Find Full Text PDF

Analysis of Cellular DNA Content in Pleural Effusion by Flow Cytometry During Lung Cancer Progression: A Case Report.

Cureus

December 2024

Department of Cancer Biochemistry and Radiobiology, Institutul Oncologic Prof. Dr. Alexandru Trestioreanu, Bucharest, ROU.

Malignant pleural effusion (MPE) is a common feature in patients with advanced or metastatic malignancies. While significant progress has been made in understanding the biology of pleural effusions, further research is needed to uncover the subsequent behavior of tumor cells following their invasion into the pleural space. This report utilizes flow cytometry to analyze DNA content abnormalities (aneuploidy) and cell cycle status, shedding light on the tumor cell populations present in MPE samples from a patient with lung adenocarcinoma during treatment.

View Article and Find Full Text PDF

Background: Mitochondria, as the energy factories of cells, are involved in a wide range of vital activities, including cell differentiation, signal transduction, the cell cycle, and apoptosis, while also regulating cell growth. However, current pharmacological treatments for stroke are challenged by issues such as drug resistance and side effects, necessitating the exploration of new therapeutic strategies.

Objective: This review aims to summarize the regulatory effects of natural compounds targeting mitochondria on neuronal mitochondrial function and metabolism, providing new perspectives for stroke treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!