Similar Publications

Elevated CO and goethite inhibited anaerobic oxidation of methane in paddy soils.

J Environ Manage

December 2024

College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.

Microbially mediated anaerobic oxidation of methane (AOM) regulates methane (CH) fluxes. Increases in the global atmospheric carbon dioxide (CO) concentration and iron oxide rich in paddy soils influence AOM. However, the response and mechanisms between these two processes and AOM remain unclear.

View Article and Find Full Text PDF

Environmental drivers of stream metabolism in a middle TN headwater stream.

PLoS One

December 2024

Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.

Monitoring the seasonal and diurnal variations in headwater stream metabolic regimes can provide critical information for understanding how ecosystems will respond to future environmental changes. In East Fork Creek, a headwater stream in middle Tennessee, week-long field campaigns were set up each month from May 2022 to May 2023 to collect stream metabolism estimators. In a more extensive field campaign from July 2-5 in 2022, diel signals were observed for temperature, pH, turbidity, and concentrations of Ca, Mg, K, Se, Fe, Ba, chloride, nitrate, DIC, DO, DOC, and total algae.

View Article and Find Full Text PDF

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening.

Nat Commun

December 2024

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Compound soil drought and heat extremes are expected to occur more frequently with global warming, causing wide-ranging socio-ecological repercussions. Vegetation modulates air temperature and soil moisture through biophysical processes, thereby influencing the occurrence of such extremes. Global vegetation cover is broadly expected to increase under climate change, but it remains unclear whether vegetation greening will alleviate or aggravate future increases in compound soil drought-heat events.

View Article and Find Full Text PDF

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.

View Article and Find Full Text PDF

Process-based quantitative description of carbon biogeochemical cycle in a reclaimed water intake area.

Environ Res

December 2024

State Key Laboratory of Nuclear Resources and Environment, Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang, Jiangxi, 330013, P.R. China.

Reclaimed water plays a pivotal role in addressing water scarcity and pollution. The carbon (C) cycle significantly impacts aquatic ecosystems and water quality, yet the C biogeochemical cycle in nutrient-rich reclaimed water remains enigmatic. This study focuses on reclaimed water, developing a conceptual biogeochemical mass balance model to examine C cycling and assess the C budget in the highly eutrophic Jian and Chaobai rivers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!