Lactoferrin and host defence: an overview of its immuno-modulating and anti-inflammatory properties.

Biometals

Unité de Glycobiologie Structurale et Fonctionnelle, Institut Fédératif de Recherche no 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France.

Published: June 2004

AI Article Synopsis

  • - Lactoferrin is an iron-binding glycoprotein found in secretions like milk and is crucial for the body's first line of defense against infections.
  • - It is released during inflammation, particularly from neutrophils, and helps control immune responses while being cleared by the liver.
  • - Although its antimicrobial and immune-modulating effects are documented, the complete cellular and molecular mechanisms behind these actions are still not fully understood.

Article Abstract

Lactoferrin is a member of the transferrin family of iron-binding glycoproteins that is abundantly expressed and secreted from glandular epithelial cells. In secretions, such as milk and fluids of the intestinal tract, lactoferrin is an important component of the first line of host defence. During the inflammatory process, lactoferrin, a prominent component of the secondary granules of neutrophils (PMNs), is released in infected tissues and in blood and then it is rapidly cleared by the liver. In addition to the antimicrobial properties of lactoferrin, a set of studies has focused on its ability to modulate the inflammatory process and the overall immune response. Though many in vitro and in vivo studies report clear regulation of the immune response and protective effect against infection and septic shock by lactoferrin, elucidation of all the cellular and molecular mechanisms of action is far from being achieved. At the cellular level, lactoferrin modulates the migration, maturation and function of immune cells. At the molecular level and in addition to iron binding, interactions of lactoferrin with a plethora of compounds, either soluble or membrane molecules, account for its modulatory properties. This paper reviews our current understanding of the cellular and molecular mechanisms that explain the regulatory properties of lactoferrin in host defence.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:biom.0000027696.48707.42DOI Listing

Publication Analysis

Top Keywords

host defence
12
properties lactoferrin
12
lactoferrin
9
lactoferrin host
8
inflammatory process
8
immune response
8
cellular molecular
8
molecular mechanisms
8
defence overview
4
overview immuno-modulating
4

Similar Publications

Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.

View Article and Find Full Text PDF

AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding.

Mycorrhiza

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.

Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.

View Article and Find Full Text PDF

Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.

View Article and Find Full Text PDF

Unlabelled: Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti- phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ∼50,000 cells from cultures of a human pathobiont, infected with a lytic bacteriophage.

View Article and Find Full Text PDF

Hosts often encounter and must respond to novel pathogens in the wild, that is pathogens that they have not encountered in recent evolutionary history, and therefore are not adapted to. How hosts respond to these novel pathogens and the outcome of such infections can be shaped by the host's evolutionary history, especially by how well adapted the host is to its native pathogens, that is pathogens they have evolved with. Host adaptation to one pathogen can either increase its susceptibility to a novel pathogen, due to specialization of immune defenses and trade-offs between different arms of the immune system, or can decrease susceptibility to novel pathogens by virtue of cross-resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!