Lactoferrin is a member of the transferrin family of iron-binding glycoproteins that is abundantly expressed and secreted from glandular epithelial cells. In secretions, such as milk and fluids of the intestinal tract, lactoferrin is an important component of the first line of host defence. During the inflammatory process, lactoferrin, a prominent component of the secondary granules of neutrophils (PMNs), is released in infected tissues and in blood and then it is rapidly cleared by the liver. In addition to the antimicrobial properties of lactoferrin, a set of studies has focused on its ability to modulate the inflammatory process and the overall immune response. Though many in vitro and in vivo studies report clear regulation of the immune response and protective effect against infection and septic shock by lactoferrin, elucidation of all the cellular and molecular mechanisms of action is far from being achieved. At the cellular level, lactoferrin modulates the migration, maturation and function of immune cells. At the molecular level and in addition to iron binding, interactions of lactoferrin with a plethora of compounds, either soluble or membrane molecules, account for its modulatory properties. This paper reviews our current understanding of the cellular and molecular mechanisms that explain the regulatory properties of lactoferrin in host defence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:biom.0000027696.48707.42 | DOI Listing |
J Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFMycorrhiza
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.
View Article and Find Full Text PDFUnlabelled: Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti- phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ∼50,000 cells from cultures of a human pathobiont, infected with a lytic bacteriophage.
View Article and Find Full Text PDFCurr Res Insect Sci
December 2024
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India.
Hosts often encounter and must respond to novel pathogens in the wild, that is pathogens that they have not encountered in recent evolutionary history, and therefore are not adapted to. How hosts respond to these novel pathogens and the outcome of such infections can be shaped by the host's evolutionary history, especially by how well adapted the host is to its native pathogens, that is pathogens they have evolved with. Host adaptation to one pathogen can either increase its susceptibility to a novel pathogen, due to specialization of immune defenses and trade-offs between different arms of the immune system, or can decrease susceptibility to novel pathogens by virtue of cross-resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!