Genes involved in storage carbohydrate metabolism are coordinately induced when yeast cells are subjected to conditions of stress, or when they exit the exponential growth phase on glucose. We show that the STress Responsive Elements (STREs) present in the promoter of GSY2 are essential for gene activation under conditions of stress, but dispensable for gene induction and glycogen accumulation at the diauxic shift on glucose. Using serial promoter deletion, we found that the latter induction could not be attributed to a single cis -regulatory sequence, and present evidence that this mechanism depends on combinatorial transcriptional control by signalling pathways involving the protein kinases Pho85, Snf1 and PKA. Two contiguous regions upstream of the GSY2 coding region are necessary for negative control by the cyclin-dependent protein kinase Pho85, one of which is a 14-bp G/C-rich sequence. Positive control by Snf1 is mediated by Mig1p, which acts indirectly on the distal part of the GSY2 promoter. The PKA pathway has the most pronounced effect on GSY2, since transcription of this gene is almost completely abolished in an ira1ira2 mutant strain in which PKA is hyperactive. The potent negative effect of PKA is dependent upon a branched pathway involving the transcription factors Msn2/Msn4p and Sok2p. The SOK2 branch was found to be effective only under conditions of high PKA activity, as in a ira1ira2 mutant, and this effect was independent of Msn2/4p. The Msn2/4p branch, on the other hand, positively controls GSY2 expression directly through the STREs, and indirectly via a factor that still remains to be discovered. In summary, this study shows that the transcription of GSY2 is regulated by several different signalling pathways which reflect the numerous factors that influence glycogen synthesis in yeast, and suggests that the PKA pathway must be deactivated to allow gene induction at the diauxic shift.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-004-1014-8 | DOI Listing |
Trends Biotechnol
January 2025
Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium. Electronic address:
Much attention has focused on understanding microbial interactions leading to stable co-cultures. In this work, substrate pulsing was performed to promote better control of the metabolic niches (MNs) corresponding to each species, leading to the continuous co-cultivation of diverse microbial organisms. We used a cell-machine interface, which allows adjustment of the temporal profile of two MNs according to a rhythm, ensuring the successive growth of two species, in our case, a yeast and a bacterium.
View Article and Find Full Text PDFBiomolecules
November 2024
Centre for Omic Sciences, Eurecat, Centre Tecnològic de Catalunya, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain.
Precision fermentation processes, especially when using edited microorganisms, demand accuracy in the bioengineering process to maximize the desired outcome and to avoid adverse effects. The selection of target sites to edit using CRISPR/Cas9 can be complex, resulting in non-controlled consequences. Therefore, the use of multi-omics strategies can help in the design, selection and efficiency of genetic editing.
View Article and Find Full Text PDFmSphere
October 2024
Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
is one of the most well-studied model organisms used in the scientific community. Its ease of manipulation, accessible growth conditions, short life cycle, and conserved eukaryotic metabolic pathways make it a useful model organism. Consequently, yeast has been used to investigate a myriad of phenomena, from microbial to human studies.
View Article and Find Full Text PDFMetab Eng Commun
December 2024
Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Molecular Biosciences, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany.
Enhancing the supply of the redox cofactor NADPH in metabolically engineered cells is a critical target for optimizing the synthesis of many product classes, such as fatty acids or terpenoids. In , several successful approaches have been developed in different experimental contexts. However, their systematic comparison has not been reported.
View Article and Find Full Text PDFNPJ Syst Biol Appl
May 2024
Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!