Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation.

Planta

Edenspace Systems Corporation, 15100 Enterprise Court, Suite 100, Dulles, VA 20151, USA.

Published: October 2004

Several species of fern from the Pteris genus are able to accumulate extremely high concentrations of arsenic (As) in the fronds. We have conducted short-term unidirectional As influx and translocation experiments with 73As-radiolabeled arsenate, and found that the concentration-dependent influx of arsenate into roots was significantly larger in two of these As-hyperaccumulating species, Pteris vittata (L.) and Pteris cretica cv. Mayii (L.), than in Nephrolepis exaltata (L.), a non-accumulating fern. The arsenate influx could be described by Michaelis-Menten kinetics and the kinetic parameter Km was found to be lower in the Pteris species, indicating higher affinity of the transport protein for arsenate. Quantitative analysis of kinetic parameters showed that phosphate inhibited arsenate influx in a directly competitive manner, consistent with the hypothesis that arsenate enters plant roots on a phosphate-transport protein. The significantly augmented translocation of arsenic to the shoots that was seen in these As hyperaccumulator species is proposed to be due to a combination of the increased root influx and also decreased sequestration of As in the roots, as a larger fraction of As could be extracted from roots of the Pteris species than from roots of N. exaltata. This leaves a larger pool of mobile As available for translocation to the shoot, probably predominantly as arsenite.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-004-1304-8DOI Listing

Publication Analysis

Top Keywords

pteris species
12
root influx
8
influx translocation
8
roots larger
8
arsenate influx
8
pteris
6
species
6
influx
6
arsenate
6
roots
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!