Overexpression of lipoprotein lipase improves insulin resistance induced by a high-fat diet in transgenic rabbits.

Diabetologia

Cardiovascular Disease Laboratory, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan.

Published: July 2004

Aims/hypothesis: Dysfunctions of lipoprotein lipase (LPL) have been found to be associated with dyslipidaemias, atherosclerosis, obesity and insulin resistance. There are two conflicting hypotheses regarding the roles of LPL in glucose metabolism and insulin resistance. Whether systemically increased LPL activity would be beneficial or detrimental to insulin sensitivity is yet to be resolved. To address this issue, we studied transgenic rabbits overexpressing human LPL transgene.

Methods: LPL transgenic and control rabbits were fed a 10% high-fat diet (HFD) for 16 weeks. To evaluate glucose metabolism, we compared plasma levels of glucose and insulin in transgenic rabbits with control rabbits and performed an intravenous glucose tolerance test. In addition, we measured adipose tissue accumulation in HFD-fed rabbits.

Results: Increased LPL activity in transgenic rabbits resulted in a significant reduction of plasma triglycerides and non-esterified fatty acids, but not in basal levels of glucose and insulin. HFD feeding induced an elevation of plasma glucose levels accompanied by hyperinsulinaemia in control rabbits, but was significantly inhibited in transgenic rabbits. The intravenous glucose tolerance test showed that transgenic rabbits had faster glucose clearance associated with lower levels of insulin secretion than control rabbits. In addition, there was a significant reduction of body adipose tissue in transgenic rabbits compared with in control rabbits fed an HFD. Scanning electron microscopic examination revealed that adipocytes in transgenic rabbits were predominately small cells.

Conclusions/interpretation: Our results showed that systemically increased LPL activity improves insulin resistance and reduces adipose accumulation in transgenic rabbits, indicating that systemic elevation of LPL may have potential benefits for the treatment of insulin resistance and obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-004-1429-0DOI Listing

Publication Analysis

Top Keywords

transgenic rabbits
36
insulin resistance
20
control rabbits
20
rabbits
14
increased lpl
12
lpl activity
12
transgenic
10
insulin
9
lipoprotein lipase
8
improves insulin
8

Similar Publications

Genetically modified chickens as bioreactors for protein-based drugs.

Front Genome Ed

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Protein drug production encompasses various methods, among which animal bioreactors are emerging as a transgenic system. Animal bioreactors have the potential to reduce production costs and increase efficiency, thereby producing recombinant proteins that are crucial for therapeutic applications. Various species, including goats, cattle, rabbits, and poultry, have been genetically engineered to serve as bioreactors.

View Article and Find Full Text PDF

Evaluation of Complement-Dependent Cytotoxicity Assays for Gene-Edited Pig-to-Human Xenotransplantation.

Xenotransplantation

January 2025

Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s).

View Article and Find Full Text PDF

Fabrication of a transforming growth factor β1 functionalized silk sericin hydrogel through genetical engineering to repair alveolar bone defects in rabbit.

Biomaterials

May 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China. Electronic address:

Cleft palate is one of the most prevalent congenital craniofacial birth defects in human congenital facial anomaly. Severe cleft palate is usually accompanied by alveolar bone defects (ABDs). Growth factors (GFs) are considered as desirable opportunity to promote the craniofacial healing post the surgery.

View Article and Find Full Text PDF

Posttraumatic osteoarthritis (PTOA) is a well-recognized public health burden without any disease modifying treatment. This occurs despite noted advances in surgical care in the past 50 years. Mitochondrial oxidative damage pathways initiate PTOA after severe injuries like intraarticular fracture that often require surgery and contribute to PTOA after less severe injuries that may or may not require surgery like meniscal injuries.

View Article and Find Full Text PDF

Development of a double-antibody sandwich ELISA for quantification of mutated EPSPS gene expression in rice.

Anal Biochem

January 2025

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, 410128, China. Electronic address:

Glyphosate resistance is a critically important trait for genetically modified (GM) crops. Mutation of the rice EPSPS gene results in a high level of glyphosate resistance, presenting significant potential for the development of glyphosate-tolerant crops. The resistance of rice to glyphosate is correlated with the expression levels of resistance genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!