Histamine is an important agent of innate immunity, transiently increasing the flux of immune-competent molecules from the vascular space to the tissues and then allowing rapid restoration of the integrity of the endothelial barrier. In previous work we found that histamine alters the endothelial barrier by disrupting cell-cell adhesion and identified VE-cadherin as an essential participant in this process. The previous work did not determine whether histamine directly interrupted VE-cadherin adhesion, whether the effects of histamine were selective for cadherin adhesion, or whether capacitive calcium flux across the cell membrane was necessary for the effects of histamine on cell-cell adhesion. In the current work we found that histamine directly interrupts adhesion of L cells expressing the type 1 histamine (H1) receptor and VE-cadherin to a VE-cadherin-Fc fusion protein. In contrast, integrin-mediated adhesion to fibronectin of the same L cells expressing the H1 receptor was not affected by histamine, demonstrating that the effects of histamine are selective for cadherin adhesion. Some of the effects of many edemagenic agonists on endothelium are dependent on the capacitive flux of calcium across the endothelial cell membrane. Blocking capacitive calcium flux with LaCl3 did not prevent histamine from interrupting VE-cadherin adhesion of transfected L cells, nor did it prevent histamine from interrupting cell-cell adhesion of human umbilical vein endothelial cells. These data support the contentions that histamine directly and selectively interrupts cadherin adhesion and this effect on cadherin adhesion is independent of capacitive calcium flux.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00056.2004 | DOI Listing |
Front Cell Neurosci
January 2025
Experimental Otology Group, InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany.
Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated.
View Article and Find Full Text PDFMolecules
December 2024
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China.
The advancement of miniaturizing electronic information technology draws growing interest in dielectric capacitors due to their high-power density and rapid charge/discharge capabilities. The sol-gel method was utilized to fabricate the 0.75Pb(ZrTi)O-0.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
University Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5261, INSERM U-1315, Institut NeuroMyoGène - Pathophysiology and Genetics of Neuron and Muscle , Lyon, France.
The potential pathogenic role of disturbed Ca2+ homeostasis in Duchenne muscular dystrophy (DMD) remains a complex, unsettled issue. We used muscle fibers isolated from 3-mo-old DMDmdx rats to further investigate the case. Most DMDmdx fibers exhibited no sign of trophic or morphology distinction as compared with WT fibers and mitochondria and t-tubule membrane networks also showed no stringent discrepancy.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876 China.
The apical dendrites of human L2/3 pyramidal neurons are capable of performing XOR computation by modulating the amplitude of dendritic calcium action potentials (dCaAPs) mediated by calcium ions. What influences this particular function? There is still no answer to this question. In this study, we employed a rational and feasible reduction method to successfully derive simplified models of human L2/3 pyramidal neurons while preserving their detailed functional properties.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Materials Science, Fudan University, Shanghai 200433, China. Electronic address:
Due to the advantages of resource abundance and low reduction potential of calcium, calcium-ion battery (CIB) becomes one of the potential candidates for energy storage devices. Prussian blue analogues (PBAs) are promising cathode materials for CIB, but they suffer from limited capacity and poor cyclability. Herein, a new PBA cathode NiCoHCF is designed with electrochemical active Co and inactive Ni.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!